000828896 001__ 828896
000828896 005__ 20230426083145.0
000828896 0247_ $$2doi$$a10.1103/PhysRevB.95.075404
000828896 0247_ $$2ISSN$$a0163-1829
000828896 0247_ $$2ISSN$$a0556-2805
000828896 0247_ $$2ISSN$$a1094-1622
000828896 0247_ $$2ISSN$$a1095-3795
000828896 0247_ $$2ISSN$$a1098-0121
000828896 0247_ $$2ISSN$$a1550-235X
000828896 0247_ $$2ISSN$$a2469-9950
000828896 0247_ $$2ISSN$$a2469-9969
000828896 0247_ $$2Handle$$a2128/14215
000828896 0247_ $$2WOS$$aWOS:000393500100005
000828896 0247_ $$2altmetric$$aaltmetric:15822700
000828896 037__ $$aFZJ-2017-02747
000828896 041__ $$aEnglish
000828896 082__ $$a530
000828896 1001_ $$0P:(DE-Juel1)159381$$aNiu, Chengwang$$b0$$eCorresponding author
000828896 245__ $$aRobust dual topological character with spin-valley polarization in a monolayer of the Dirac semimetal Na 3 Bi
000828896 260__ $$aWoodbury, NY$$bInst.$$c2017
000828896 3367_ $$2DRIVER$$aarticle
000828896 3367_ $$2DataCite$$aOutput Types/Journal article
000828896 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521100615_16839
000828896 3367_ $$2BibTeX$$aARTICLE
000828896 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828896 3367_ $$00$$2EndNote$$aJournal Article
000828896 520__ $$aTopological materials with both insulating and semimetal phases can be protected by crystalline (e.g., mirror) symmetry. The insulating phase, called a topological crystalline insulator (TCI), has been investigated intensively and observed in three-dimensional materials. However, the predicted two-dimensional (2D) materials with TCI phase are explored much less than 3D TCIs and 2D topological insulators, while the 2D TCIs considered thus far possess almost exclusively a square-lattice structure with the mirror Chern number CM=−2. Here, we predict theoretically that a hexagonal monolayer of Dirac semimetal Na3Bi is a 2D TCI with a mirror Chern number CM=−1. The large nontrivial gap of 0.31 eV is tunable and can be made much larger via strain engineering, while the topological phases are robust against strain, indicating a high possibility for room-temperature observation of quantized conductance. In addition, a nonzero spin Chern number CS=−1 is obtained, indicating the coexistence of a 2D topological insulator and a 2D TCI, i.e., the dual topological character. Remarkably, a spin-valley polarization is revealed in the Na3Bi monolayer due to the breaking of crystal inversion symmetry. The dual topological character is further explicitly confirmed via the unusual behavior of the edge states under the corresponding symmetry breaking.
000828896 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000828896 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000828896 536__ $$0G:(DE-Juel1)jiff13_20131101$$aMagnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20131101)$$cjiff13_20131101$$fMagnetic Anisotropy of Metallic Layered Systems and Nanostructures$$x2
000828896 536__ $$0G:(DE-Juel1)jias12_20121101$$aTopological transport in real materials from ab initio (jias12_20121101)$$cjias12_20121101$$fTopological transport in real materials from ab initio$$x3
000828896 542__ $$2Crossref$$i2017-02-06$$uhttp://link.aps.org/licenses/aps-default-license
000828896 588__ $$aDataset connected to CrossRef
000828896 7001_ $$0P:(DE-Juel1)161204$$aBuhl, Patrick$$b1$$ufzj
000828896 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, Gustav$$b2$$ufzj
000828896 7001_ $$0P:(DE-Juel1)131042$$aWortmann, Daniel$$b3$$ufzj
000828896 7001_ $$0P:(DE-HGF)0$$aDai, Ying$$b4
000828896 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b5$$ufzj
000828896 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b6$$ufzj
000828896 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.95.075404$$bAmerican Physical Society (APS)$$d2017-02-06$$n7$$p075404$$tPhysical Review B$$v95$$x2469-9950$$y2017
000828896 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.95.075404$$gVol. 95, no. 7, p. 075404$$n7$$p075404$$tPhysical review / B$$v95$$x2469-9950$$y2017
000828896 8564_ $$uhttps://juser.fz-juelich.de/record/828896/files/PhysRevB.95.075404.pdf$$yOpenAccess
000828896 8564_ $$uhttps://juser.fz-juelich.de/record/828896/files/PhysRevB.95.075404.gif?subformat=icon$$xicon$$yOpenAccess
000828896 8564_ $$uhttps://juser.fz-juelich.de/record/828896/files/PhysRevB.95.075404.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000828896 8564_ $$uhttps://juser.fz-juelich.de/record/828896/files/PhysRevB.95.075404.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000828896 8564_ $$uhttps://juser.fz-juelich.de/record/828896/files/PhysRevB.95.075404.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000828896 8564_ $$uhttps://juser.fz-juelich.de/record/828896/files/PhysRevB.95.075404.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000828896 909CO $$ooai:juser.fz-juelich.de:828896$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000828896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159381$$aForschungszentrum Jülich$$b0$$kFZJ
000828896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161204$$aForschungszentrum Jülich$$b1$$kFZJ
000828896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b2$$kFZJ
000828896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131042$$aForschungszentrum Jülich$$b3$$kFZJ
000828896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b5$$kFZJ
000828896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b6$$kFZJ
000828896 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000828896 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000828896 9141_ $$y2017
000828896 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828896 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000828896 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2015
000828896 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828896 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828896 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828896 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000828896 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000828896 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000828896 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828896 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828896 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828896 920__ $$lyes
000828896 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000828896 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000828896 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000828896 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000828896 980__ $$ajournal
000828896 980__ $$aVDB
000828896 980__ $$aI:(DE-Juel1)IAS-1-20090406
000828896 980__ $$aI:(DE-Juel1)PGI-1-20110106
000828896 980__ $$aI:(DE-82)080009_20140620
000828896 980__ $$aI:(DE-82)080012_20140620
000828896 980__ $$aUNRESTRICTED
000828896 9801_ $$aFullTexts
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.82.3045
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.83.1057
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.106802
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms1969
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-conmatphys-031214-014501
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.045426
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.112.016802
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.114.256401
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat3828
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.226801
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.041401
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1148047
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.136603
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1409701111
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.136804
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/am.2014.113
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.041303
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl504493d
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.5b02293
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.5b00418
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl502481f
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.5b00308
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.201401
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.5b02299
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/2053-1583/3/2/025037
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.166805
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.236809
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys547
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1250140
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.195320
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1245085
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.6b00638
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.47.558
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.54.11169
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.19.1706
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2007.11.016
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.035120
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl903868w
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2404663
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1256815
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.037204
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.066602
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.195119
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.035104
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1838
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms1882
000828896 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat3332