000828903 001__ 828903
000828903 005__ 20210129230203.0
000828903 0247_ $$2doi$$a10.1016/j.neuroimage.2017.03.015
000828903 0247_ $$2ISSN$$a1053-8119
000828903 0247_ $$2ISSN$$a1095-9572
000828903 0247_ $$2WOS$$aWOS:000402584500044
000828903 0247_ $$2altmetric$$aaltmetric:17156101
000828903 0247_ $$2pmid$$apmid:28284803
000828903 037__ $$aFZJ-2017-02754
000828903 082__ $$a610
000828903 1001_ $$0P:(DE-Juel1)156353$$aNiessen, Eva$$b0$$eCorresponding author
000828903 245__ $$aError detection across the adult lifespan: Electrophysiological evidence for age-related deficits
000828903 260__ $$aOrlando, Fla.$$bAcademic Press$$c2017
000828903 3367_ $$2DRIVER$$aarticle
000828903 3367_ $$2DataCite$$aOutput Types/Journal article
000828903 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491806790_30233
000828903 3367_ $$2BibTeX$$aARTICLE
000828903 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828903 3367_ $$00$$2EndNote$$aJournal Article
000828903 520__ $$aWith increasing age, cognitive control processes steadily decline. Prior research suggests that healthy older adults have a generally intact performance monitoring system, but show specific deficits in error awareness, i.e., the ability to detect committed errors. We examined the neural processing of errors across the adult lifespan (69 participants; age range 20–72 years) by analysing the error (-related) negativity (Ne/ERN) and the error positivity (Pe) using an adapted version of the Go/Nogo task.At a stable overall error rate, higher age was associated with a greater proportion of undetected errors. While the Ne/ERN was associated with the processing of errors in general, the Pe amplitude was modulated by detected errors only. Furthermore, the Pe amplitude for detected errors was significantly smaller in older adults, in contrast to the Ne/ERN amplitude which did not show age-related changes. Structural path models suggested that through those age-related changes in Pe amplitude, an indirect effect on the performance was observed.Our results confirm and extend previous extreme-group based findings about specific deficits in error detection associated with higher age using age as a continuous predictor. Age-related reductions in Pe amplitude, associated with more undetected errors, are independent of early error processing, as evidenced by the preserved Ne/ERN.
000828903 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000828903 588__ $$aDataset connected to CrossRef
000828903 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b1
000828903 7001_ $$0P:(DE-HGF)0$$aHoffmann, Heide E. M.$$b2
000828903 7001_ $$0P:(DE-Juel1)131748$$aWeiss-Blankenhorn, Peter$$b3
000828903 7001_ $$0P:(DE-HGF)0$$aStahl, Jutta$$b4
000828903 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2017.03.015$$gVol. 152, p. 517 - 529$$p517 - 529$$tNeuroImage$$v152$$x1053-8119$$y2017
000828903 8564_ $$uhttps://juser.fz-juelich.de/record/828903/files/1-s2.0-S1053811917302240-main.pdf$$yRestricted
000828903 8564_ $$uhttps://juser.fz-juelich.de/record/828903/files/1-s2.0-S1053811917302240-main.gif?subformat=icon$$xicon$$yRestricted
000828903 8564_ $$uhttps://juser.fz-juelich.de/record/828903/files/1-s2.0-S1053811917302240-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828903 8564_ $$uhttps://juser.fz-juelich.de/record/828903/files/1-s2.0-S1053811917302240-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828903 8564_ $$uhttps://juser.fz-juelich.de/record/828903/files/1-s2.0-S1053811917302240-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828903 8564_ $$uhttps://juser.fz-juelich.de/record/828903/files/1-s2.0-S1053811917302240-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828903 909CO $$ooai:juser.fz-juelich.de:828903$$pVDB
000828903 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156353$$aForschungszentrum Jülich$$b0$$kFZJ
000828903 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b1$$kFZJ
000828903 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131748$$aForschungszentrum Jülich$$b3$$kFZJ
000828903 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000828903 9141_ $$y2017
000828903 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000828903 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828903 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828903 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000828903 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2015
000828903 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000828903 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000828903 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828903 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828903 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828903 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828903 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000828903 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000828903 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2015
000828903 920__ $$lyes
000828903 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000828903 980__ $$ajournal
000828903 980__ $$aVDB
000828903 980__ $$aI:(DE-Juel1)INM-3-20090406
000828903 980__ $$aUNRESTRICTED