000828950 001__ 828950
000828950 005__ 20241127124646.0
000828950 0247_ $$2doi$$a10.1016/j.jpowsour.2017.04.056
000828950 0247_ $$2ISSN$$a0378-7753
000828950 0247_ $$2ISSN$$a1873-2755
000828950 0247_ $$2WOS$$aWOS:000402344300007
000828950 037__ $$aFZJ-2017-02770
000828950 082__ $$a620
000828950 1001_ $$0P:(DE-Juel1)207065$$aSamsun, Remzi Can$$b0$$eCorresponding author
000828950 245__ $$aA diesel fuel processor for fuel-cell-based APU applications
000828950 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000828950 3367_ $$2DRIVER$$aarticle
000828950 3367_ $$2DataCite$$aOutput Types/Journal article
000828950 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1493122349_8491
000828950 3367_ $$2BibTeX$$aARTICLE
000828950 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828950 3367_ $$00$$2EndNote$$aJournal Article
000828950 520__ $$aProducing a hydrogen-rich gas from diesel fuel enables the efficient generation of electricity in a fuel-cell-based auxiliary power unit. In recent years, significant progress has been achieved in diesel reforming. One issue encountered is the stable operation of water-gas shift reactors with real reformates. A new fuel processor is developed using a commercial shift catalyst. The system is operated using optimized start-up and shut-down strategies. Experiments with diesel and kerosene fuels show slight performance drops in the shift reactor during continuous operation for 100 h. CO concentrations much lower than the target value are achieved during system operation in auxiliary power unit mode at partial loads of up to 60%. The regeneration leads to full recovery of the shift activity. Finally, a new operation strategy is developed whereby the gas hourly space velocity of the shift stages is re-designed. This strategy is validated using different diesel and kerosene fuels, showing a maximum CO concentration of 1.5% at the fuel processor outlet under extreme conditions, which can be tolerated by a high-temperature PEFC. The proposed operation strategy solves the issue of strong performance drop in the shift reactor and makes this technology available for reducing emissions in the transportation sector.
000828950 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000828950 588__ $$aDataset connected to CrossRef
000828950 7001_ $$0P:(DE-Juel1)156354$$aKrekel, Daniel$$b1
000828950 7001_ $$0P:(DE-Juel1)129898$$aPasel, Joachim$$b2
000828950 7001_ $$0P:(DE-Juel1)129906$$aPrawitz, Matthias$$b3
000828950 7001_ $$0P:(DE-Juel1)129902$$aPeters, Ralf$$b4
000828950 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b5
000828950 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2017.04.056$$gVol. 355, p. 44 - 52$$p44 - 52$$tJournal of power sources$$v355$$x0378-7753$$y2017
000828950 8564_ $$uhttps://juser.fz-juelich.de/record/828950/files/1-s2.0-S0378775317305517-main.pdf$$yRestricted
000828950 8564_ $$uhttps://juser.fz-juelich.de/record/828950/files/1-s2.0-S0378775317305517-main.gif?subformat=icon$$xicon$$yRestricted
000828950 8564_ $$uhttps://juser.fz-juelich.de/record/828950/files/1-s2.0-S0378775317305517-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828950 8564_ $$uhttps://juser.fz-juelich.de/record/828950/files/1-s2.0-S0378775317305517-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828950 8564_ $$uhttps://juser.fz-juelich.de/record/828950/files/1-s2.0-S0378775317305517-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828950 8564_ $$uhttps://juser.fz-juelich.de/record/828950/files/1-s2.0-S0378775317305517-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828950 909CO $$ooai:juser.fz-juelich.de:828950$$pVDB
000828950 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207065$$aForschungszentrum Jülich$$b0$$kFZJ
000828950 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156354$$aForschungszentrum Jülich$$b1$$kFZJ
000828950 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129898$$aForschungszentrum Jülich$$b2$$kFZJ
000828950 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129906$$aForschungszentrum Jülich$$b3$$kFZJ
000828950 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129902$$aForschungszentrum Jülich$$b4$$kFZJ
000828950 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b5$$kFZJ
000828950 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000828950 9141_ $$y2017
000828950 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015
000828950 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828950 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828950 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000828950 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000828950 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000828950 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828950 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828950 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828950 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828950 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828950 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000828950 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015
000828950 920__ $$lyes
000828950 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000828950 980__ $$ajournal
000828950 980__ $$aVDB
000828950 980__ $$aI:(DE-Juel1)IEK-3-20101013
000828950 980__ $$aUNRESTRICTED
000828950 981__ $$aI:(DE-Juel1)ICE-2-20101013