000828964 001__ 828964
000828964 005__ 20240712113118.0
000828964 0247_ $$2doi$$a10.1039/C6TA10944F
000828964 0247_ $$2ISSN$$a2050-7488
000828964 0247_ $$2ISSN$$a2050-7496
000828964 0247_ $$2WOS$$aWOS:000398323400025
000828964 037__ $$aFZJ-2017-02784
000828964 082__ $$a540
000828964 1001_ $$0P:(DE-HGF)0$$aQian, Yunxian$$b0
000828964 245__ $$aInvestigation of nano-sized Cu( ii )O as a high capacity conversion material for Li-metal cells and lithium-ion full cells
000828964 260__ $$aLondon [u.a.]$$bRSC$$c2017
000828964 3367_ $$2DRIVER$$aarticle
000828964 3367_ $$2DataCite$$aOutput Types/Journal article
000828964 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491566668_655
000828964 3367_ $$2BibTeX$$aARTICLE
000828964 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828964 3367_ $$00$$2EndNote$$aJournal Article
000828964 520__ $$aIn this study, self-prepared nanostructured CuO electrodes show no capacity decay for 40 cycles at 0.1C in Li metal cells. The reaction mechanisms of the CuO electrodes are investigated. With the help of in situ EIS, in situ XRD, TEM, XAS, SQUID, IC and GC-MS, it is found that the as-prepared CuO electrode undergoes significant phase and composition changes during the initial lithiation, with the transformation of CuO to nano-crystalline Cu. During the 1st delithiation, Cu is inhomogeneously oxidized, which yields a mixture of Cu2O, Cu2−xO and Cu. The incomplete conversion reaction during the 1st cycle is accompanied by the formation and partial decomposition of the solid electrolyte interphase (SEI) as the side reactions. Nevertheless, from the 1st to the 5th delithiation, the oxidation state of Cu approaches +2. After an additional formation step, the transformation to Cu and back to Cu2−xO remains stable during the subsequent long-term cycling with no electrolyte decomposition products detected. The LiNi1/3Mn1/3Co1/3O2 (NMC-111)/CuO full cells show high capacities (655.8 ± 0.6, 618.6 ± 0.9 and 290 ± 2 mA h g−1 at 0.1, 1 and 10C, respectively), within the voltage range of 0.7–4.0 V at 20 °C and a high capacity retention (85% after 200 cycles at 1C).
000828964 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000828964 588__ $$aDataset connected to CrossRef
000828964 7001_ $$0P:(DE-HGF)0$$aNiehoff, Philip$$b1
000828964 7001_ $$0P:(DE-HGF)0$$aZhou, Dong$$b2
000828964 7001_ $$0P:(DE-HGF)0$$aAdam, Robert$$b3
000828964 7001_ $$0P:(DE-HGF)0$$aMikhailova, Daria$$b4
000828964 7001_ $$0P:(DE-HGF)0$$aPyschik, Marcelina$$b5
000828964 7001_ $$0P:(DE-HGF)0$$aBörner, Markus$$b6
000828964 7001_ $$0P:(DE-HGF)0$$aKlöpsch, Richard$$b7
000828964 7001_ $$0P:(DE-HGF)0$$aRafaja, David$$b8
000828964 7001_ $$0P:(DE-HGF)0$$aSchumacher, Gerhard$$b9
000828964 7001_ $$0P:(DE-HGF)0$$aEhrenberg, Helmut$$b10
000828964 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b11
000828964 7001_ $$0P:(DE-HGF)0$$aSchappacher, Falko$$b12$$eCorresponding author
000828964 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/C6TA10944F$$gVol. 5, no. 14, p. 6556 - 6568$$n14$$p6556 - 6568$$tJournal of materials chemistry / A$$v5$$x2050-7496$$y2017
000828964 8564_ $$uhttps://juser.fz-juelich.de/record/828964/files/c6ta10944f.pdf$$yRestricted
000828964 8564_ $$uhttps://juser.fz-juelich.de/record/828964/files/c6ta10944f.gif?subformat=icon$$xicon$$yRestricted
000828964 8564_ $$uhttps://juser.fz-juelich.de/record/828964/files/c6ta10944f.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828964 8564_ $$uhttps://juser.fz-juelich.de/record/828964/files/c6ta10944f.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828964 8564_ $$uhttps://juser.fz-juelich.de/record/828964/files/c6ta10944f.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828964 8564_ $$uhttps://juser.fz-juelich.de/record/828964/files/c6ta10944f.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828964 909CO $$ooai:juser.fz-juelich.de:828964$$pVDB
000828964 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b11$$kFZJ
000828964 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000828964 9141_ $$y2017
000828964 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000828964 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828964 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2015
000828964 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828964 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828964 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828964 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828964 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828964 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828964 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000828964 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MATER CHEM A : 2015
000828964 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000828964 980__ $$ajournal
000828964 980__ $$aVDB
000828964 980__ $$aI:(DE-Juel1)IEK-12-20141217
000828964 980__ $$aUNRESTRICTED
000828964 981__ $$aI:(DE-Juel1)IMD-4-20141217