001     828964
005     20240712113118.0
024 7 _ |a 10.1039/C6TA10944F
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a WOS:000398323400025
|2 WOS
037 _ _ |a FZJ-2017-02784
082 _ _ |a 540
100 1 _ |a Qian, Yunxian
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Investigation of nano-sized Cu( ii )O as a high capacity conversion material for Li-metal cells and lithium-ion full cells
260 _ _ |a London [u.a.]
|c 2017
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491566668_655
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this study, self-prepared nanostructured CuO electrodes show no capacity decay for 40 cycles at 0.1C in Li metal cells. The reaction mechanisms of the CuO electrodes are investigated. With the help of in situ EIS, in situ XRD, TEM, XAS, SQUID, IC and GC-MS, it is found that the as-prepared CuO electrode undergoes significant phase and composition changes during the initial lithiation, with the transformation of CuO to nano-crystalline Cu. During the 1st delithiation, Cu is inhomogeneously oxidized, which yields a mixture of Cu2O, Cu2−xO and Cu. The incomplete conversion reaction during the 1st cycle is accompanied by the formation and partial decomposition of the solid electrolyte interphase (SEI) as the side reactions. Nevertheless, from the 1st to the 5th delithiation, the oxidation state of Cu approaches +2. After an additional formation step, the transformation to Cu and back to Cu2−xO remains stable during the subsequent long-term cycling with no electrolyte decomposition products detected. The LiNi1/3Mn1/3Co1/3O2 (NMC-111)/CuO full cells show high capacities (655.8 ± 0.6, 618.6 ± 0.9 and 290 ± 2 mA h g−1 at 0.1, 1 and 10C, respectively), within the voltage range of 0.7–4.0 V at 20 °C and a high capacity retention (85% after 200 cycles at 1C).
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Niehoff, Philip
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhou, Dong
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Adam, Robert
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mikhailova, Daria
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Pyschik, Marcelina
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Börner, Markus
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Klöpsch, Richard
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Rafaja, David
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Schumacher, Gerhard
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ehrenberg, Helmut
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 11
700 1 _ |a Schappacher, Falko
|0 P:(DE-HGF)0
|b 12
|e Corresponding author
773 _ _ |a 10.1039/C6TA10944F
|g Vol. 5, no. 14, p. 6556 - 6568
|0 PERI:(DE-600)2702232-8
|n 14
|p 6556 - 6568
|t Journal of materials chemistry / A
|v 5
|y 2017
|x 2050-7496
856 4 _ |u https://juser.fz-juelich.de/record/828964/files/c6ta10944f.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828964/files/c6ta10944f.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828964/files/c6ta10944f.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828964/files/c6ta10944f.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828964/files/c6ta10944f.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828964/files/c6ta10944f.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828964
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MATER CHEM A : 2015
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21