000828968 001__ 828968
000828968 005__ 20240712113119.0
000828968 0247_ $$2doi$$a10.1021/acs.jpcc.6b11746
000828968 0247_ $$2ISSN$$a1932-7447
000828968 0247_ $$2ISSN$$a1932-7455
000828968 0247_ $$2WOS$$aWOS:000393008900018
000828968 037__ $$aFZJ-2017-02788
000828968 082__ $$a540
000828968 1001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b0$$eCorresponding author$$ufzj
000828968 245__ $$aChanging Established Belief on Capacity Fade Mechanisms: Thorough Investigation of LiNi $_{1/3}$ Co $_{1/3}$ Mn $_{1/3}$ O $_{2}$ (NCM111) under High Voltage Conditions
000828968 260__ $$aWashington, DC$$bSoc.$$c2017
000828968 3367_ $$2DRIVER$$aarticle
000828968 3367_ $$2DataCite$$aOutput Types/Journal article
000828968 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491567147_653
000828968 3367_ $$2BibTeX$$aARTICLE
000828968 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828968 3367_ $$00$$2EndNote$$aJournal Article
000828968 520__ $$aThe further development of lithium ion batteries operating at high voltages requires basic understanding of the occurring capacity fade mechanisms. In this work, the overall specific capacity loss with regard to reversible and irreversible processes for LiNi1/3Co1/3Mn1/3O2 (NCM111)/Li half cells, cycled at a charge cutoff potential of 4.6 V vs Li/Li+, has been investigated in detail. By means of total X-ray fluorescence (TXRF) technique it was shown that specific capacity losses associated with the amount of dissolved transition metals are negligible, implying a still intact NCM111 active material after 53 cycles. It was demonstrated that the specific capacity fade during cycling at constant specific currents can be mainly attributed to the increase of the delithiation (charge) hindrance, whereas lithiation (discharge) hindrance is only present after a specific current increase, leading to apparent specific capacity losses and to decreased Coulombic efficiencies. This could be proven by the determination of the NCM lithiation degree in the discharged state with inductively coupled plasma optical emission spectroscopy (ICP–OES). Moreover, by decreasing the kinetic hindrance in the NCM material, it was shown that most of the observed specific capacity losses after 53 cycles are reversible. The influence of the active material and the cathode electrolyte interphase (CEI) on the specific capacity fade has been discussed. The results of the X-ray photoelectron spectroscopy (XPS) studies revealed that the CEI thickness is predominately dependent on the applied temperature (thermal-chemical origin) rather than the applied electrode potential (electrochemical origin). Finally, the absence of a fade in specific capacity for LiNi0.5Mn1.5O4 (LNMO) at an even higher charge cutoff potential of 4.95 V vs Li/Li+ points to a strong active material dependence than solely to the impact of electrolyte decomposition and CEI formation.
000828968 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000828968 588__ $$aDataset connected to CrossRef
000828968 7001_ $$0P:(DE-HGF)0$$aEvertz, Marco$$b1
000828968 7001_ $$0P:(DE-HGF)0$$aStreipert, Benjamin$$b2
000828968 7001_ $$0P:(DE-HGF)0$$aWagner, Ralf$$b3
000828968 7001_ $$0P:(DE-HGF)0$$aNowak, Sascha$$b4
000828968 7001_ $$0P:(DE-HGF)0$$aCekic Laskovic, Isidora$$b5
000828968 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6
000828968 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.6b11746$$gVol. 121, no. 3, p. 1521 - 1529$$n3$$p1521 - 1529$$tThe @journal of physical chemistry <Washington, DC> / C$$v121$$x1932-7455$$y2017
000828968 8564_ $$uhttps://juser.fz-juelich.de/record/828968/files/acs.jpcc.6b11746.pdf$$yRestricted
000828968 8564_ $$uhttps://juser.fz-juelich.de/record/828968/files/acs.jpcc.6b11746.gif?subformat=icon$$xicon$$yRestricted
000828968 8564_ $$uhttps://juser.fz-juelich.de/record/828968/files/acs.jpcc.6b11746.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828968 8564_ $$uhttps://juser.fz-juelich.de/record/828968/files/acs.jpcc.6b11746.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828968 8564_ $$uhttps://juser.fz-juelich.de/record/828968/files/acs.jpcc.6b11746.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828968 8564_ $$uhttps://juser.fz-juelich.de/record/828968/files/acs.jpcc.6b11746.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828968 909CO $$ooai:juser.fz-juelich.de:828968$$pVDB
000828968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ
000828968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ
000828968 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000828968 9141_ $$y2017
000828968 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2015
000828968 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828968 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828968 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828968 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828968 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828968 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828968 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828968 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000828968 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000828968 980__ $$ajournal
000828968 980__ $$aVDB
000828968 980__ $$aI:(DE-Juel1)IEK-12-20141217
000828968 980__ $$aUNRESTRICTED
000828968 981__ $$aI:(DE-Juel1)IMD-4-20141217