001     828973
005     20240712113113.0
024 7 _ |a 10.1016/j.electacta.2017.01.034
|2 doi
024 7 _ |a 0013-4686
|2 ISSN
024 7 _ |a 1873-3859
|2 ISSN
024 7 _ |a WOS:000395211600003
|2 WOS
037 _ _ |a FZJ-2017-02790
082 _ _ |a 540
100 1 _ |a Meister, Paul
|0 P:(DE-Juel1)172048
|b 0
|u fzj
245 _ _ |a Sodium-Based vs. Lithium-Based Dual-Ion Cells: Electrochemical Study of Anion Intercalation/De-Intercalation into/from Graphite and Metal Plating/Dissolution Behavior
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491569338_657
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Energy storage systems utilizing a simultaneous intercalation of anions into a graphite host structure at the positive electrode and intercalation/insertion/reduction or deposition of cations at the negative electrode during charge, were introduced under the term dual-ion cells, recently. In this work, the electrochemical intercalation of TFSI− anions into graphite has been studied in sodium‐based dual‐ion cells (SDICs) at different upper cut‐off potentials varying between 4.5 V and 4.7 V vs. Na/Na+. Electrochemical characteristics of SDICs, including the reversible capacity, Coulombic efficiency, energy efficiency and onset potentials for anion intercalation, were evaluated in comparison to the lithium-based dual-ions cells (LDICs). A stable charge/discharge cycling performance over 500 cycles has been found for SDICs providing a specific capacity of ≈ 32 mAh g‐1 and a Coulombic efficiency exceeding 99% at an upper cut‐off potential of 4.7 V vs. Na/Na+ at the graphite cathode. By the addition of the electrolyte additive ethylene sulfite (ES), an increase of the reversible capacity to ≈ 46 mAh g‐1 was achieved. Furthermore, possible reasons for the overall inferior cycling performance in terms of capacity for SDICs as compared to LDICs such as an increased overpotential for plating/stripping of Na+ ions as compared to Li+ ions are discussed. In this respect, we also found that the addition of ethylene sulfite particularly decreases the overpotentials for the metal plating process, which at least partially explains the enhanced reversible capacity in LDICs and SDICs by using ES as electrolyte additive.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fromm, Olga
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rothermel, Sergej
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kasnatscheew, Johannes
|0 P:(DE-Juel1)171865
|b 3
|u fzj
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 4
|e Corresponding author
|u fzj
700 1 _ |a Placke, Tobias
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.electacta.2017.01.034
|g Vol. 228, p. 18 - 27
|0 PERI:(DE-600)1483548-4
|p 18 - 27
|t Electrochimica acta
|v 228
|y 2017
|x 0013-4686
856 4 _ |u https://juser.fz-juelich.de/record/828973/files/1-s2.0-S0013468617300348-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828973/files/1-s2.0-S0013468617300348-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828973/files/1-s2.0-S0013468617300348-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828973/files/1-s2.0-S0013468617300348-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828973/files/1-s2.0-S0013468617300348-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828973/files/1-s2.0-S0013468617300348-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828973
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172048
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171865
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTROCHIM ACTA : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21