000828977 001__ 828977
000828977 005__ 20240712113114.0
000828977 0247_ $$2doi$$a10.1002/cssc.201601636
000828977 0247_ $$2ISSN$$a1864-5631
000828977 0247_ $$2ISSN$$a1864-564X
000828977 0247_ $$2WOS$$aWOS:000397006500020
000828977 0247_ $$2altmetric$$aaltmetric:15853964
000828977 0247_ $$2pmid$$apmid:28127874
000828977 037__ $$aFZJ-2017-02794
000828977 082__ $$a540
000828977 1001_ $$0P:(DE-Juel1)172048$$aMeister, Paul$$b0
000828977 245__ $$aAnodic Behavior of the Aluminum Current Collector in Imide-Based Electrolytes: Influence of Solvent, Operating Temperature, and Native Oxide-Layer Thickness
000828977 260__ $$aWeinheim$$bWiley-VCH$$c2017
000828977 3367_ $$2DRIVER$$aarticle
000828977 3367_ $$2DataCite$$aOutput Types/Journal article
000828977 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491568956_653
000828977 3367_ $$2BibTeX$$aARTICLE
000828977 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828977 3367_ $$00$$2EndNote$$aJournal Article
000828977 520__ $$aThe inability of imide salts to form a sufficiently effective passivation layer on aluminum current collectors is one of the main obstacles that limit their broad application in electrochemical energy-storage systems. However, under certain circumstances, the use of electrolytes with imide electrolyte salts in combination with the aluminum current collector is possible. In this contribution, the stability of the aluminum current collector in electrolytes containing either lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) or lithium fluorosulfonyl-(trifluoromethanesulfonyl) imide (LiFTFSI) as conductive salt was investigated by electrochemical techniques, that is, cyclic voltammetry (CV) and chronocoulometry (CC) in either room-temperature ionic liquids or in ethyl methyl sulfone. In particular, the influence of the solvent, operating temperature, and thickness of the native oxide layer of aluminum on the pit formation at the aluminum current collector surface was studied by means of scanning electron microscopy. In general, a more pronounced aluminum dissolution and pit formation was found at elevated temperatures as well as in solvents with a high dielectric constant. An enhanced thickness of the native aluminum oxide layer increases the oxidative stability versus dissolution. Furthermore, we found a different reaction rate depending on dwell time at the upper cut-off potential for aluminum dissolution in TFSI- and FTFSI-based electrolytes during the CC measurements; the use of LiFTFSI facilitated the dissolution of aluminum compared to LiTFSI. Overall, the mechanism of anodic aluminum dissolution is based on: i) the attack of the Al2O3 surface by acidic species and ii) the dissolution of bare aluminum into the electrolyte, which, in turn, is influenced by the electrolyte's dielectric constant.
000828977 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000828977 588__ $$aDataset connected to CrossRef
000828977 7001_ $$0P:(DE-HGF)0$$aQi, Xin$$b1
000828977 7001_ $$0P:(DE-HGF)0$$aKloepsch, Richard$$b2
000828977 7001_ $$0P:(DE-HGF)0$$aKrämer, Elisabeth$$b3
000828977 7001_ $$0P:(DE-HGF)0$$aStreipert, Benjamin$$b4
000828977 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b5$$eCorresponding author
000828977 7001_ $$0P:(DE-HGF)0$$aPlacke, Tobias$$b6$$eCorresponding author
000828977 773__ $$0PERI:(DE-600)2411405-4$$a10.1002/cssc.201601636$$gVol. 10, no. 4, p. 804 - 814$$n4$$p804 - 814$$tChemSusChem$$v10$$x1864-5631$$y2017
000828977 8564_ $$uhttps://juser.fz-juelich.de/record/828977/files/Meister_et_al-2017-ChemSusChem.pdf$$yRestricted
000828977 8564_ $$uhttps://juser.fz-juelich.de/record/828977/files/Meister_et_al-2017-ChemSusChem.gif?subformat=icon$$xicon$$yRestricted
000828977 8564_ $$uhttps://juser.fz-juelich.de/record/828977/files/Meister_et_al-2017-ChemSusChem.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828977 8564_ $$uhttps://juser.fz-juelich.de/record/828977/files/Meister_et_al-2017-ChemSusChem.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828977 8564_ $$uhttps://juser.fz-juelich.de/record/828977/files/Meister_et_al-2017-ChemSusChem.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828977 8564_ $$uhttps://juser.fz-juelich.de/record/828977/files/Meister_et_al-2017-ChemSusChem.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828977 909CO $$ooai:juser.fz-juelich.de:828977$$pVDB
000828977 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172048$$aForschungszentrum Jülich$$b0$$kFZJ
000828977 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ
000828977 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000828977 9141_ $$y2017
000828977 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMSUSCHEM : 2015
000828977 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828977 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828977 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828977 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828977 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828977 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828977 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828977 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMSUSCHEM : 2015
000828977 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000828977 980__ $$ajournal
000828977 980__ $$aVDB
000828977 980__ $$aI:(DE-Juel1)IEK-12-20141217
000828977 980__ $$aUNRESTRICTED
000828977 981__ $$aI:(DE-Juel1)IMD-4-20141217