001     828977
005     20240712113114.0
024 7 _ |a 10.1002/cssc.201601636
|2 doi
024 7 _ |a 1864-5631
|2 ISSN
024 7 _ |a 1864-564X
|2 ISSN
024 7 _ |a WOS:000397006500020
|2 WOS
024 7 _ |a altmetric:15853964
|2 altmetric
024 7 _ |a pmid:28127874
|2 pmid
037 _ _ |a FZJ-2017-02794
082 _ _ |a 540
100 1 _ |a Meister, Paul
|0 P:(DE-Juel1)172048
|b 0
245 _ _ |a Anodic Behavior of the Aluminum Current Collector in Imide-Based Electrolytes: Influence of Solvent, Operating Temperature, and Native Oxide-Layer Thickness
260 _ _ |a Weinheim
|c 2017
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491568956_653
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The inability of imide salts to form a sufficiently effective passivation layer on aluminum current collectors is one of the main obstacles that limit their broad application in electrochemical energy-storage systems. However, under certain circumstances, the use of electrolytes with imide electrolyte salts in combination with the aluminum current collector is possible. In this contribution, the stability of the aluminum current collector in electrolytes containing either lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) or lithium fluorosulfonyl-(trifluoromethanesulfonyl) imide (LiFTFSI) as conductive salt was investigated by electrochemical techniques, that is, cyclic voltammetry (CV) and chronocoulometry (CC) in either room-temperature ionic liquids or in ethyl methyl sulfone. In particular, the influence of the solvent, operating temperature, and thickness of the native oxide layer of aluminum on the pit formation at the aluminum current collector surface was studied by means of scanning electron microscopy. In general, a more pronounced aluminum dissolution and pit formation was found at elevated temperatures as well as in solvents with a high dielectric constant. An enhanced thickness of the native aluminum oxide layer increases the oxidative stability versus dissolution. Furthermore, we found a different reaction rate depending on dwell time at the upper cut-off potential for aluminum dissolution in TFSI- and FTFSI-based electrolytes during the CC measurements; the use of LiFTFSI facilitated the dissolution of aluminum compared to LiTFSI. Overall, the mechanism of anodic aluminum dissolution is based on: i) the attack of the Al2O3 surface by acidic species and ii) the dissolution of bare aluminum into the electrolyte, which, in turn, is influenced by the electrolyte's dielectric constant.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Qi, Xin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kloepsch, Richard
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Krämer, Elisabeth
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Streipert, Benjamin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 5
|e Corresponding author
700 1 _ |a Placke, Tobias
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1002/cssc.201601636
|g Vol. 10, no. 4, p. 804 - 814
|0 PERI:(DE-600)2411405-4
|n 4
|p 804 - 814
|t ChemSusChem
|v 10
|y 2017
|x 1864-5631
856 4 _ |u https://juser.fz-juelich.de/record/828977/files/Meister_et_al-2017-ChemSusChem.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828977/files/Meister_et_al-2017-ChemSusChem.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828977/files/Meister_et_al-2017-ChemSusChem.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828977/files/Meister_et_al-2017-ChemSusChem.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828977/files/Meister_et_al-2017-ChemSusChem.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828977/files/Meister_et_al-2017-ChemSusChem.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828977
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172048
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMSUSCHEM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEMSUSCHEM : 2015
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21