001     828979
005     20240712113119.0
024 7 _ |a 10.1039/C6AY02264B
|2 doi
024 7 _ |a 1759-9660
|2 ISSN
024 7 _ |a 1759-9679
|2 ISSN
024 7 _ |a 2128/14154
|2 Handle
024 7 _ |a WOS:000385380800014
|2 WOS
037 _ _ |a FZJ-2017-02796
082 _ _ |a 540
100 1 _ |a Wilken, A.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A fluoride-selective electrode (Fse) for the quantification of fluoride in lithium-ion battery (Lib) electrolytes
260 _ _ |a Cambridge
|c 2016
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491569419_655
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this work, a fluoride-selective electrode (FSE) was applied with regard to the analysis of fluoride in lithium hexafluorophosphate-based lithium-ion battery (LIB) electrolytes. The influence of linear organic carbonate solvents dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) which are used as co-solvents in battery electrolytes was investigated. The developed FSE method for the analysis of battery electrolytes was comprehensively validated in view of the (1) trueness and recovery rates (nominal vs. actual comparison; influence of different amounts of electrolytes on the performance of the electrode; recovery rates of defined differences in concentration), (2) precision (intra-day precision and inter-day precision), (3) selectivity (influence of the carbonate solvents on different fluoride concentrations; interferents) and (4) linearity and range. Statistical analysis was performed to evaluate the data and to characterize the reproducibility of the method. The determination of the commercially available LP30 (1 mol LiPF6 and ethylene carbonate/dimethyl carbonate (EC : DMC, 50 : 50 wt%)) electrolyte stored over 47 days and at 80 °C, by the FSE technique was compared to the fluoride analysis by ion chromatography (IC). While interferences in the IC method resulted in false-high concentrations, the FSE operated free from interferences, selective and specific. The validation of the method was successfully carried out and enables new areas of application.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kraft, V.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Girod, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Winter, M.
|0 P:(DE-Juel1)166130
|b 3
|u fzj
700 1 _ |a Nowak, S.
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1039/C6AY02264B
|g Vol. 8, no. 38, p. 6932 - 6940
|0 PERI:(DE-600)2515210-5
|n 38
|p 6932 - 6940
|t Analytical methods
|v 8
|y 2016
|x 1759-9679
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/828979/files/c6ay02264b.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/828979/files/c6ay02264b.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/828979/files/c6ay02264b.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/828979/files/c6ay02264b.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/828979/files/c6ay02264b.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/828979/files/c6ay02264b.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:828979
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANAL METHODS-UK : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21