000828980 001__ 828980
000828980 005__ 20240712113119.0
000828980 0247_ $$2doi$$a10.1149/2.0461614jes
000828980 0247_ $$2ISSN$$a0013-4651
000828980 0247_ $$2ISSN$$a0096-4743
000828980 0247_ $$2ISSN$$a0096-4786
000828980 0247_ $$2ISSN$$a1945-7111
000828980 0247_ $$2WOS$$aWOS:000393852200014
000828980 037__ $$aFZJ-2017-02797
000828980 082__ $$a540
000828980 1001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b0$$eCorresponding author$$ufzj
000828980 245__ $$aLearning from Overpotentials in Lithium Ion Batteries: A Case Study on the LiNi $_{1/3}$ Co $_{1/3}$ Mn $_{1/3}$ O $_{2}$ (NCM) Cathode
000828980 260__ $$aPennington, NJ$$bElectrochemical Soc.$$c2016
000828980 3367_ $$2DRIVER$$aarticle
000828980 3367_ $$2DataCite$$aOutput Types/Journal article
000828980 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491569606_660
000828980 3367_ $$2BibTeX$$aARTICLE
000828980 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828980 3367_ $$00$$2EndNote$$aJournal Article
000828980 520__ $$aThe practically available specific energy of Li ion batteries (LIB) is highly depending on the used specific charge/discharge current, since the respective overpotentials of each electrode affect the two vital specific energy parameters, specific capacity and voltage. Focusing on the positive composite electrode as the specific energy bottleneck, the overall nature of the overpotential is discussed for the LiNi1/3Co1/3Mn1/3O2 (NCM) active material. It is shown that the characteristic overpotentials during charge (delithiation) and discharge (lithiation) is state of charge (SOC) and depth of discharge (DOD) dependent, respectively. It was demonstrated that the discharge characteristics are intertwined with the previous charge conditions, particularly with the charging time and the specific charge capacity. Increasing both in parallel can even lead to a deterioration of the subsequent specific discharge capacity. Furthermore, Li+ transport pathways within the NCM composite electrode are discussed and their influence on the observed overpotential evaluated. Changes of the overpotential are found to be mainly associated with changes within the NCM crystal structure, which is experimentally supported by the correlation of the SOC dependent overpotential with the XRD determined c-axis lattice parameter. Consequently, the Li+ transport within the active material is mostly responsible for limiting the practically available specific energy.
000828980 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000828980 588__ $$aDataset connected to CrossRef
000828980 7001_ $$0P:(DE-HGF)0$$aRodehorst, Uta$$b1
000828980 7001_ $$0P:(DE-HGF)0$$aStreipert, Benjamin$$b2
000828980 7001_ $$0P:(DE-HGF)0$$aWiemers-Meyer, Simon$$b3
000828980 7001_ $$0P:(DE-HGF)0$$aJakelski, Rene$$b4
000828980 7001_ $$0P:(DE-HGF)0$$aWagner, Ralf$$b5
000828980 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b6$$ufzj
000828980 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b7$$eCorresponding author$$ufzj
000828980 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/2.0461614jes$$gVol. 163, no. 14, p. A2943 - A2950$$n14$$pA2943 - A2950$$tJournal of the Electrochemical Society$$v163$$x1945-7111$$y2016
000828980 8564_ $$uhttps://juser.fz-juelich.de/record/828980/files/J.%20Electrochem.%20Soc.-2016-Kasnatscheew-A2943-50.pdf$$yRestricted
000828980 8564_ $$uhttps://juser.fz-juelich.de/record/828980/files/J.%20Electrochem.%20Soc.-2016-Kasnatscheew-A2943-50.gif?subformat=icon$$xicon$$yRestricted
000828980 8564_ $$uhttps://juser.fz-juelich.de/record/828980/files/J.%20Electrochem.%20Soc.-2016-Kasnatscheew-A2943-50.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828980 8564_ $$uhttps://juser.fz-juelich.de/record/828980/files/J.%20Electrochem.%20Soc.-2016-Kasnatscheew-A2943-50.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828980 8564_ $$uhttps://juser.fz-juelich.de/record/828980/files/J.%20Electrochem.%20Soc.-2016-Kasnatscheew-A2943-50.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828980 8564_ $$uhttps://juser.fz-juelich.de/record/828980/files/J.%20Electrochem.%20Soc.-2016-Kasnatscheew-A2943-50.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828980 909CO $$ooai:juser.fz-juelich.de:828980$$pVDB
000828980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b0$$kFZJ
000828980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b6$$kFZJ
000828980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b7$$kFZJ
000828980 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000828980 9141_ $$y2017
000828980 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2015
000828980 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828980 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828980 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828980 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828980 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828980 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828980 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828980 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000828980 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000828980 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000828980 980__ $$ajournal
000828980 980__ $$aVDB
000828980 980__ $$aI:(DE-Juel1)IEK-12-20141217
000828980 980__ $$aUNRESTRICTED
000828980 981__ $$aI:(DE-Juel1)IMD-4-20141217