001     828980
005     20240712113119.0
024 7 _ |a 10.1149/2.0461614jes
|2 doi
024 7 _ |a 0013-4651
|2 ISSN
024 7 _ |a 0096-4743
|2 ISSN
024 7 _ |a 0096-4786
|2 ISSN
024 7 _ |a 1945-7111
|2 ISSN
024 7 _ |a WOS:000393852200014
|2 WOS
037 _ _ |a FZJ-2017-02797
082 _ _ |a 540
100 1 _ |a Kasnatscheew, Johannes
|0 P:(DE-Juel1)171865
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Learning from Overpotentials in Lithium Ion Batteries: A Case Study on the LiNi $_{1/3}$ Co $_{1/3}$ Mn $_{1/3}$ O $_{2}$ (NCM) Cathode
260 _ _ |a Pennington, NJ
|c 2016
|b Electrochemical Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491569606_660
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The practically available specific energy of Li ion batteries (LIB) is highly depending on the used specific charge/discharge current, since the respective overpotentials of each electrode affect the two vital specific energy parameters, specific capacity and voltage. Focusing on the positive composite electrode as the specific energy bottleneck, the overall nature of the overpotential is discussed for the LiNi1/3Co1/3Mn1/3O2 (NCM) active material. It is shown that the characteristic overpotentials during charge (delithiation) and discharge (lithiation) is state of charge (SOC) and depth of discharge (DOD) dependent, respectively. It was demonstrated that the discharge characteristics are intertwined with the previous charge conditions, particularly with the charging time and the specific charge capacity. Increasing both in parallel can even lead to a deterioration of the subsequent specific discharge capacity. Furthermore, Li+ transport pathways within the NCM composite electrode are discussed and their influence on the observed overpotential evaluated. Changes of the overpotential are found to be mainly associated with changes within the NCM crystal structure, which is experimentally supported by the correlation of the SOC dependent overpotential with the XRD determined c-axis lattice parameter. Consequently, the Li+ transport within the active material is mostly responsible for limiting the practically available specific energy.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rodehorst, Uta
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Streipert, Benjamin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wiemers-Meyer, Simon
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jakelski, Rene
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wagner, Ralf
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Cekic-Laskovic, Isidora
|0 P:(DE-Juel1)171204
|b 6
|u fzj
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 7
|e Corresponding author
|u fzj
773 _ _ |a 10.1149/2.0461614jes
|g Vol. 163, no. 14, p. A2943 - A2950
|0 PERI:(DE-600)2002179-3
|n 14
|p A2943 - A2950
|t Journal of the Electrochemical Society
|v 163
|y 2016
|x 1945-7111
856 4 _ |u https://juser.fz-juelich.de/record/828980/files/J.%20Electrochem.%20Soc.-2016-Kasnatscheew-A2943-50.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828980/files/J.%20Electrochem.%20Soc.-2016-Kasnatscheew-A2943-50.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828980/files/J.%20Electrochem.%20Soc.-2016-Kasnatscheew-A2943-50.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828980/files/J.%20Electrochem.%20Soc.-2016-Kasnatscheew-A2943-50.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828980/files/J.%20Electrochem.%20Soc.-2016-Kasnatscheew-A2943-50.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828980/files/J.%20Electrochem.%20Soc.-2016-Kasnatscheew-A2943-50.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828980
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171865
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)171204
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCHEM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21