001     828981
005     20240712113119.0
024 7 _ |a 10.1016/j.jpowsour.2016.09.100
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a WOS:000386643000009
|2 WOS
037 _ _ |a FZJ-2017-02798
082 _ _ |a 620
100 1 _ |a Qian, Yunxian
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Investigations on the electrochemical decomposition of the electrolyte additive vinylene carbonate in Li metal half cells and lithium ion full cells
260 _ _ |a New York, NY [u.a.]
|c 2016
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491569727_656
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this study, the decomposition of vinylene carbonate (VC) additive and its effect on the aging behavior is investigated in Li metal half cells and lithium ion full cells. Four electrolyte systems, the reference electrolyte with three VC additive amounts, i.e., 1, 5 and 10 vol% are examined with commercial LiNi1/3Mn1/3Co1/3O2 (NMC 111) cathode material and mesophase carbon microbeads (MCMB) anode material. The thickness changes of the cathode electrolyte interphase (CEI) and of the solid electrolyte interphase (SEI) after 5 constant current cycles at 0.1C and 200 constant current/constant voltage (potential) cycles at 1C are investigated for cells containing different amounts of VC. With the help of X-ray photoelectron spectroscopy (XPS) and high-performance liquid chromatography (HPLC), a correlation between CEI thickness change and electrolyte decomposition is figured out. The addition of VC leads to a thin CEI layer and a high capacity retention in a lithium metal half cell. A strong dependence of the performance on the VC concentration is found for half cells that results from the continuous consumption of electrolyte and the electrolyte additive at the Li metal counter electrode. In contrast, for full cells, even 1 vol% of VC helps to form both a stable CEI and SEI, while a larger amount of VC increases the CEI thickness, electric contact loss and the internal resistance.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schultz, Carola
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Niehoff, Philip
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schwieters, Timo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Nowak, Sascha
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schappacher, Falko M.
|0 0000-0002-3743-8837
|b 5
|e Corresponding author
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.jpowsour.2016.09.100
|g Vol. 332, p. 60 - 71
|0 PERI:(DE-600)1491915-1
|p 60 - 71
|t Journal of power sources
|v 332
|y 2016
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/828981/files/1-s2.0-S0378775316312708-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828981/files/1-s2.0-S0378775316312708-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828981/files/1-s2.0-S0378775316312708-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828981/files/1-s2.0-S0378775316312708-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828981/files/1-s2.0-S0378775316312708-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828981/files/1-s2.0-S0378775316312708-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828981
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2015
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21