000828982 001__ 828982
000828982 005__ 20240712113050.0
000828982 0247_ $$2doi$$a10.1002/ente.201600383
000828982 0247_ $$2ISSN$$a2194-4288
000828982 0247_ $$2ISSN$$a2194-4296
000828982 0247_ $$2Handle$$a2128/14155
000828982 0247_ $$2WOS$$aWOS:000392916700021
000828982 0247_ $$2altmetric$$aaltmetric:10945097
000828982 037__ $$aFZJ-2017-02799
000828982 082__ $$a620
000828982 1001_ $$0P:(DE-HGF)0$$aBörner, Markus$$b0
000828982 245__ $$aComparison of Different Synthesis Methods for LiNi $-{0.5}$ Mn $_{1.5}$ O $_{4}$ -Influence on Battery Cycling Performance, Degradation, and Aging
000828982 260__ $$aWeinheim [u.a.]$$bWiley-VCH$$c2016
000828982 3367_ $$2DRIVER$$aarticle
000828982 3367_ $$2DataCite$$aOutput Types/Journal article
000828982 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491569801_652
000828982 3367_ $$2BibTeX$$aARTICLE
000828982 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828982 3367_ $$00$$2EndNote$$aJournal Article
000828982 520__ $$aThe high-voltage spinel LiNi0.5Mn1.5O4 is one of the most promising candidates for use in high-energy-density lithium-ion batteries. To investigate the influence of the synthesis method and the resulting particle morphology on the electrochemical performance, performance degradation, and aging, different synthesis routes for LiNi0.5Mn1.5O4 were evaluated in this study. Inhomogeneous transition metal cation intermixing and exposure to high temperatures during synthesis led to the formation of a small amount of impurities, which had a severe impact on the electrochemical performance. Furthermore, the particle morphology influences the electrolyte decomposition and the formation of the cathode electrolyte interphase (CEI) on the surface of particles. Moreover, transition metal dissolution was investigated by analyzing the Ni and Mn content in the electrolyte after constant current charge–discharge cycling. The results suggest that an unstable delithiated structure at high potentials leads to the dissolution of Mn and Ni into the electrolyte, whereas the particle morphology had only a minor influence on the extent of transition metal dissolution.
000828982 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000828982 588__ $$aDataset connected to CrossRef
000828982 7001_ $$0P:(DE-HGF)0$$aNiehoff, Philip$$b1
000828982 7001_ $$0P:(DE-HGF)0$$aVortmann, Britta$$b2
000828982 7001_ $$0P:(DE-HGF)0$$aNowak, Sascha$$b3
000828982 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4
000828982 7001_ $$00000-0002-3743-8837$$aSchappacher, Falko M.$$b5$$eCorresponding author
000828982 773__ $$0PERI:(DE-600)2700412-0$$a10.1002/ente.201600383$$gVol. 4, no. 12, p. 1631 - 1640$$n12$$p1631 - 1640$$tEnergy technology$$v4$$x2194-4288$$y2016
000828982 8564_ $$uhttps://juser.fz-juelich.de/record/828982/files/B-rner_et_al-2016-Energy_Technology.pdf$$yOpenAccess
000828982 8564_ $$uhttps://juser.fz-juelich.de/record/828982/files/B-rner_et_al-2016-Energy_Technology.gif?subformat=icon$$xicon$$yOpenAccess
000828982 8564_ $$uhttps://juser.fz-juelich.de/record/828982/files/B-rner_et_al-2016-Energy_Technology.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000828982 8564_ $$uhttps://juser.fz-juelich.de/record/828982/files/B-rner_et_al-2016-Energy_Technology.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000828982 8564_ $$uhttps://juser.fz-juelich.de/record/828982/files/B-rner_et_al-2016-Energy_Technology.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000828982 8564_ $$uhttps://juser.fz-juelich.de/record/828982/files/B-rner_et_al-2016-Energy_Technology.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000828982 909CO $$ooai:juser.fz-juelich.de:828982$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000828982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
000828982 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000828982 9141_ $$y2017
000828982 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828982 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000828982 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY TECHNOL-GER : 2015
000828982 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000828982 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828982 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828982 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000828982 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000828982 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828982 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000828982 9801_ $$aFullTexts
000828982 980__ $$ajournal
000828982 980__ $$aVDB
000828982 980__ $$aUNRESTRICTED
000828982 980__ $$aI:(DE-Juel1)IEK-12-20141217
000828982 981__ $$aI:(DE-Juel1)IMD-4-20141217