001     828982
005     20240712113050.0
024 7 _ |a 10.1002/ente.201600383
|2 doi
024 7 _ |a 2194-4288
|2 ISSN
024 7 _ |a 2194-4296
|2 ISSN
024 7 _ |a 2128/14155
|2 Handle
024 7 _ |a WOS:000392916700021
|2 WOS
024 7 _ |a altmetric:10945097
|2 altmetric
037 _ _ |a FZJ-2017-02799
082 _ _ |a 620
100 1 _ |a Börner, Markus
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Comparison of Different Synthesis Methods for LiNi $-{0.5}$ Mn $_{1.5}$ O $_{4}$ -Influence on Battery Cycling Performance, Degradation, and Aging
260 _ _ |a Weinheim [u.a.]
|c 2016
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491569801_652
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The high-voltage spinel LiNi0.5Mn1.5O4 is one of the most promising candidates for use in high-energy-density lithium-ion batteries. To investigate the influence of the synthesis method and the resulting particle morphology on the electrochemical performance, performance degradation, and aging, different synthesis routes for LiNi0.5Mn1.5O4 were evaluated in this study. Inhomogeneous transition metal cation intermixing and exposure to high temperatures during synthesis led to the formation of a small amount of impurities, which had a severe impact on the electrochemical performance. Furthermore, the particle morphology influences the electrolyte decomposition and the formation of the cathode electrolyte interphase (CEI) on the surface of particles. Moreover, transition metal dissolution was investigated by analyzing the Ni and Mn content in the electrolyte after constant current charge–discharge cycling. The results suggest that an unstable delithiated structure at high potentials leads to the dissolution of Mn and Ni into the electrolyte, whereas the particle morphology had only a minor influence on the extent of transition metal dissolution.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Niehoff, Philip
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Vortmann, Britta
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Nowak, Sascha
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 4
700 1 _ |a Schappacher, Falko M.
|0 0000-0002-3743-8837
|b 5
|e Corresponding author
773 _ _ |a 10.1002/ente.201600383
|g Vol. 4, no. 12, p. 1631 - 1640
|0 PERI:(DE-600)2700412-0
|n 12
|p 1631 - 1640
|t Energy technology
|v 4
|y 2016
|x 2194-4288
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/828982/files/B-rner_et_al-2016-Energy_Technology.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/828982/files/B-rner_et_al-2016-Energy_Technology.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/828982/files/B-rner_et_al-2016-Energy_Technology.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/828982/files/B-rner_et_al-2016-Energy_Technology.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/828982/files/B-rner_et_al-2016-Energy_Technology.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/828982/files/B-rner_et_al-2016-Energy_Technology.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:828982
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY TECHNOL-GER : 2015
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21