000828983 001__ 828983
000828983 005__ 20240712113119.0
000828983 0247_ $$2doi$$a10.1016/j.jpowsour.2016.09.071
000828983 0247_ $$2ISSN$$a0378-7753
000828983 0247_ $$2ISSN$$a1873-2755
000828983 0247_ $$2WOS$$aWOS:000387524600006
000828983 037__ $$aFZJ-2017-02800
000828983 082__ $$a620
000828983 1001_ $$0P:(DE-HGF)0$$aBörner, M.$$b0
000828983 245__ $$aDegradation effects on the surface of commercial LiNi$_{0.5}$Co$_{0.2}$Mn$_{0.3}$O$_{2}$ electrodes
000828983 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2016
000828983 3367_ $$2DRIVER$$aarticle
000828983 3367_ $$2DataCite$$aOutput Types/Journal article
000828983 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491569993_660
000828983 3367_ $$2BibTeX$$aARTICLE
000828983 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828983 3367_ $$00$$2EndNote$$aJournal Article
000828983 520__ $$aA comprehensive analysis of the degradation mechanisms on the surface of commercial LiNi0.5Co0.2Mn0.3O2 electrodes is presented. Irregularly distributed particle cracking and the formation of a cathode electrolyte interphase on the surface of the active material were identified to be the main degradation mechanisms. The particle cracking originates from inhomogeneity of the composite electrode, leading to deviations in the local current density and the state of charge which results in overcharge conditions for particular LiNi0.5Co0.2Mn0.3O2 particles. Therein, the highly delithiated structure suffers from anisotropic stress due to repulsive interactions between adjacent layers and the formation of new phases which eventually cause particle cracking. The structural changes were confirmed by the presence of a spinel phase on the surface of the cracked particles. Furthermore, the migration of transition metal ions in the highly delithiated structure can facilitate their dissolution into the electrolyte. The investigation of the re-deposited transition metals reveals a predominant dissolution of manganese from the overcharged particles. In addition, electrochemical cycling of the LiNi0.5Co0.2Mn0.3O2 electrodes in laboratory cells show an increasing severity of the particle cracking at higher C-rates which can influence the thermal stability of the active material. Moreover, an increased electrolyte decomposition was observed for higher cut-off potentials.
000828983 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000828983 588__ $$aDataset connected to CrossRef
000828983 7001_ $$0P:(DE-HGF)0$$aHorsthemke, F.$$b1
000828983 7001_ $$0P:(DE-HGF)0$$aKollmer, F.$$b2
000828983 7001_ $$0P:(DE-HGF)0$$aHaseloff, S.$$b3
000828983 7001_ $$0P:(DE-HGF)0$$aFriesen, A.$$b4
000828983 7001_ $$0P:(DE-HGF)0$$aNiehoff, P.$$b5
000828983 7001_ $$0P:(DE-HGF)0$$aNowak, S.$$b6
000828983 7001_ $$0P:(DE-Juel1)166130$$aWinter, M.$$b7
000828983 7001_ $$0P:(DE-HGF)0$$aSchappacher, F. M.$$b8$$eCorresponding author
000828983 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2016.09.071$$gVol. 335, p. 45 - 55$$p45 - 55$$tJournal of power sources$$v335$$x0378-7753$$y2016
000828983 8564_ $$uhttps://juser.fz-juelich.de/record/828983/files/1-s2.0-S0378775316312332-main.pdf$$yRestricted
000828983 8564_ $$uhttps://juser.fz-juelich.de/record/828983/files/1-s2.0-S0378775316312332-main.gif?subformat=icon$$xicon$$yRestricted
000828983 8564_ $$uhttps://juser.fz-juelich.de/record/828983/files/1-s2.0-S0378775316312332-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828983 8564_ $$uhttps://juser.fz-juelich.de/record/828983/files/1-s2.0-S0378775316312332-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828983 8564_ $$uhttps://juser.fz-juelich.de/record/828983/files/1-s2.0-S0378775316312332-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828983 8564_ $$uhttps://juser.fz-juelich.de/record/828983/files/1-s2.0-S0378775316312332-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828983 909CO $$ooai:juser.fz-juelich.de:828983$$pVDB
000828983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b7$$kFZJ
000828983 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000828983 9141_ $$y2017
000828983 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015
000828983 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828983 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828983 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000828983 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000828983 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000828983 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828983 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828983 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828983 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828983 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828983 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000828983 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015
000828983 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000828983 980__ $$ajournal
000828983 980__ $$aVDB
000828983 980__ $$aI:(DE-Juel1)IEK-12-20141217
000828983 980__ $$aUNRESTRICTED
000828983 981__ $$aI:(DE-Juel1)IMD-4-20141217