000828987 001__ 828987 000828987 005__ 20240712113120.0 000828987 0247_ $$2doi$$a10.1002/cssc.201601062 000828987 0247_ $$2ISSN$$a1864-5631 000828987 0247_ $$2ISSN$$a1864-564X 000828987 0247_ $$2WOS$$aWOS:000394571500016 000828987 0247_ $$2altmetric$$aaltmetric:14610056 000828987 0247_ $$2pmid$$apmid:27860314 000828987 037__ $$aFZJ-2017-02804 000828987 082__ $$a540 000828987 1001_ $$0P:(DE-HGF)0$$aRothermel, Sergej$$b0 000828987 245__ $$aGraphite Recycling from Spent Lithium-Ion Batteries 000828987 260__ $$aWeinheim$$bWiley-VCH$$c2016 000828987 3367_ $$2DRIVER$$aarticle 000828987 3367_ $$2DataCite$$aOutput Types/Journal article 000828987 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491570445_659 000828987 3367_ $$2BibTeX$$aARTICLE 000828987 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000828987 3367_ $$00$$2EndNote$$aJournal Article 000828987 520__ $$aThe present work reports on challenges in utilization of spent lithium-ion batteries (LIBs)—an increasingly important aspect associated with a significantly rising demand for electric vehicles (EVs). In this context, the feasibility of anode recycling in combination with three different electrolyte extraction concepts is investigated. The first method is based on a thermal treatment of graphite without electrolyte recovery. The second method additionally utilizes a subcritical carbon-dioxide (subcritical CO2)-assisted electrolyte extraction prior to thermal treatment. And the final investigated approach uses supercritical carbon dioxide (scCO2) as extractant, subsequently followed by the thermal treatment. It is demonstrated that the best performance of recycled graphite anodes can be achieved when electrolyte extraction is performed using subcritical CO2. Comparative studies reveal that, in the best case, the electrochemical performance of recycled graphite exceeds the benchmark consisting of a newly synthesized graphite anode. As essential efforts towards electrolyte extraction and cathode recycling have been made in the past, the electrochemical behavior of recycled graphite, demonstrating the best performance, is investigated in combination with a recycled LiNi1/3Co1/3Mn1/3O2 cathode. 000828987 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000828987 588__ $$aDataset connected to CrossRef 000828987 7001_ $$0P:(DE-HGF)0$$aEvertz, Marco$$b1 000828987 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b2$$ufzj 000828987 7001_ $$0P:(DE-HGF)0$$aQi, Xin$$b3 000828987 7001_ $$0P:(DE-HGF)0$$aGrützke, Martin$$b4 000828987 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b5$$ufzj 000828987 7001_ $$0P:(DE-HGF)0$$aNowak, Sascha$$b6$$eCorresponding author 000828987 773__ $$0PERI:(DE-600)2411405-4$$a10.1002/cssc.201601062$$gVol. 9, no. 24, p. 3473 - 3484$$n24$$p3473 - 3484$$tChemSusChem$$v9$$x1864-5631$$y2016 000828987 8564_ $$uhttps://juser.fz-juelich.de/record/828987/files/Rothermel_et_al-2016-ChemSusChem.pdf$$yRestricted 000828987 8564_ $$uhttps://juser.fz-juelich.de/record/828987/files/Rothermel_et_al-2016-ChemSusChem.gif?subformat=icon$$xicon$$yRestricted 000828987 8564_ $$uhttps://juser.fz-juelich.de/record/828987/files/Rothermel_et_al-2016-ChemSusChem.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000828987 8564_ $$uhttps://juser.fz-juelich.de/record/828987/files/Rothermel_et_al-2016-ChemSusChem.jpg?subformat=icon-180$$xicon-180$$yRestricted 000828987 8564_ $$uhttps://juser.fz-juelich.de/record/828987/files/Rothermel_et_al-2016-ChemSusChem.jpg?subformat=icon-640$$xicon-640$$yRestricted 000828987 8564_ $$uhttps://juser.fz-juelich.de/record/828987/files/Rothermel_et_al-2016-ChemSusChem.pdf?subformat=pdfa$$xpdfa$$yRestricted 000828987 909CO $$ooai:juser.fz-juelich.de:828987$$pVDB 000828987 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b2$$kFZJ 000828987 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ 000828987 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000828987 9141_ $$y2017 000828987 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMSUSCHEM : 2015 000828987 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000828987 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000828987 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000828987 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000828987 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000828987 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000828987 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000828987 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMSUSCHEM : 2015 000828987 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 000828987 980__ $$ajournal 000828987 980__ $$aVDB 000828987 980__ $$aI:(DE-Juel1)IEK-12-20141217 000828987 980__ $$aUNRESTRICTED 000828987 981__ $$aI:(DE-Juel1)IMD-4-20141217