001     828987
005     20240712113120.0
024 7 _ |a 10.1002/cssc.201601062
|2 doi
024 7 _ |a 1864-5631
|2 ISSN
024 7 _ |a 1864-564X
|2 ISSN
024 7 _ |a WOS:000394571500016
|2 WOS
024 7 _ |a altmetric:14610056
|2 altmetric
024 7 _ |a pmid:27860314
|2 pmid
037 _ _ |a FZJ-2017-02804
082 _ _ |a 540
100 1 _ |a Rothermel, Sergej
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Graphite Recycling from Spent Lithium-Ion Batteries
260 _ _ |a Weinheim
|c 2016
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491570445_659
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The present work reports on challenges in utilization of spent lithium-ion batteries (LIBs)—an increasingly important aspect associated with a significantly rising demand for electric vehicles (EVs). In this context, the feasibility of anode recycling in combination with three different electrolyte extraction concepts is investigated. The first method is based on a thermal treatment of graphite without electrolyte recovery. The second method additionally utilizes a subcritical carbon-dioxide (subcritical CO2)-assisted electrolyte extraction prior to thermal treatment. And the final investigated approach uses supercritical carbon dioxide (scCO2) as extractant, subsequently followed by the thermal treatment. It is demonstrated that the best performance of recycled graphite anodes can be achieved when electrolyte extraction is performed using subcritical CO2. Comparative studies reveal that, in the best case, the electrochemical performance of recycled graphite exceeds the benchmark consisting of a newly synthesized graphite anode. As essential efforts towards electrolyte extraction and cathode recycling have been made in the past, the electrochemical behavior of recycled graphite, demonstrating the best performance, is investigated in combination with a recycled LiNi1/3Co1/3Mn1/3O2 cathode.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Evertz, Marco
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kasnatscheew, Johannes
|0 P:(DE-Juel1)171865
|b 2
|u fzj
700 1 _ |a Qi, Xin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Grützke, Martin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 5
|u fzj
700 1 _ |a Nowak, Sascha
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1002/cssc.201601062
|g Vol. 9, no. 24, p. 3473 - 3484
|0 PERI:(DE-600)2411405-4
|n 24
|p 3473 - 3484
|t ChemSusChem
|v 9
|y 2016
|x 1864-5631
856 4 _ |u https://juser.fz-juelich.de/record/828987/files/Rothermel_et_al-2016-ChemSusChem.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828987/files/Rothermel_et_al-2016-ChemSusChem.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828987/files/Rothermel_et_al-2016-ChemSusChem.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828987/files/Rothermel_et_al-2016-ChemSusChem.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828987/files/Rothermel_et_al-2016-ChemSusChem.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828987/files/Rothermel_et_al-2016-ChemSusChem.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828987
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171865
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMSUSCHEM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEMSUSCHEM : 2015
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21