001     828988
005     20240712113120.0
024 7 _ |a 10.1002/celc.201600610
|2 doi
024 7 _ |a WOS:000394905900012
|2 WOS
024 7 _ |a altmetric:13891320
|2 altmetric
037 _ _ |a FZJ-2017-02805
082 _ _ |a 540
100 1 _ |a Brox, Sebastian
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Innovative, Non-Corrosive LiTFSI Cyanoester-Based Electrolyte for Safer 4 V Lithium-Ion Batteries
260 _ _ |a Weinheim
|c 2017
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491571103_657
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Here, we report on methyl 3-cyanopropanoate (MCP) in combination with the conductive salt lithium bis(trifluoromethane)sulfonyl imide (LiTFSI) as a safe single-solvent electrolyte for lithium-ion batteries (LIBs). To investigate the extent of anodic aluminum dissolution, an innovative electrochemical technique was introduced. Long-term full-cell [LiNi1/3Mn1/3Co1/3O2 (NMC111)/graphite] cycling results confirm the applicability of the LiTFSI/MCP-based electrolyte with state-of-the-art LIB active materials.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Röser, Stephan
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Streipert, Benjamin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hildebrand, Stephan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rodehorst, Uta
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Qi, Xin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wagner, Ralf
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 7
|u fzj
700 1 _ |a Cekic-Laskovic, Isidora
|0 P:(DE-Juel1)171204
|b 8
|u fzj
773 _ _ |a 10.1002/celc.201600610
|g Vol. 4, no. 2, p. 304 - 309
|0 PERI:(DE-600)2724978-5
|n 2
|p 304 - 309
|t ChemElectroChem
|v 4
|y 2017
|x 2196-0216
856 4 _ |u https://juser.fz-juelich.de/record/828988/files/Brox_et_al-2017-ChemElectroChem.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828988/files/Brox_et_al-2017-ChemElectroChem.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828988/files/Brox_et_al-2017-ChemElectroChem.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828988/files/Brox_et_al-2017-ChemElectroChem.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828988/files/Brox_et_al-2017-ChemElectroChem.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828988/files/Brox_et_al-2017-ChemElectroChem.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828988
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)171204
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMELECTROCHEM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21