001     828990
005     20240712113120.0
024 7 _ |a 10.1016/j.electacta.2016.11.100
|2 doi
024 7 _ |a 0013-4686
|2 ISSN
024 7 _ |a 1873-3859
|2 ISSN
024 7 _ |a WOS:000395443700035
|2 WOS
037 _ _ |a FZJ-2017-02807
082 _ _ |a 540
100 1 _ |a Wiemers-Meyer, Simon
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Influence of Battery Cell Components and Water on the Thermal and Chemical Stability of LiPF6 Based Lithium Ion Battery Electrolytes
260 _ _ |a New York, NY [u.a.]
|c 2016
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491571204_657
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lithium ion battery electrolytes based on LiPF6 and organic solvents are known to degrade at elevated temperatures. The degradation reactions can be caused either chemically e.g. by simple contact with battery cell components and/or electrochemically during cycling. This study is focused on thermally induced chemical reactions of the electrolyte with different battery cell components. These reactions are monitored by means of quantitative NMR spectroscopy. The results allow for categorizing the influences of the components according to their reactivity against HF. Inert materials (graphite, carbon black, polyvinylidene difluoride, polyolefinic and ceramic separator) do not show any observable influence on the thermal stability of the electrolyte. If the materials react with HF but the reaction does not form water in significant amounts (Li metal and LiNi1/3Co1/3Mn1/3O2), there is also no influence observable. In contrast to that, materials, which can form water in contact with HF at significant rates (glass fiber separator, Si and LiFePO4), can lead to a slightly increased or even severe electrolyte degradation. However, if the material neutralizes the acid HF (carboxymethyl cellulose), it stabilizes LiPF6 against water sources. Furthermore, the results of this study show that LiPF6 is stable at temperatures up to 80°C, if no water sources are present. This stability is most likely also given for even higher temperatures.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jeremias, Sebastian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 2
|u fzj
700 1 _ |a Nowak, Sascha
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1016/j.electacta.2016.11.100
|g Vol. 222, p. 1267 - 1271
|0 PERI:(DE-600)1483548-4
|p 1267 - 1271
|t Electrochimica acta
|v 222
|y 2016
|x 0013-4686
856 4 _ |u https://juser.fz-juelich.de/record/828990/files/1-s2.0-S0013468616324318-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828990/files/1-s2.0-S0013468616324318-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828990/files/1-s2.0-S0013468616324318-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828990/files/1-s2.0-S0013468616324318-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828990/files/1-s2.0-S0013468616324318-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828990/files/1-s2.0-S0013468616324318-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828990
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTROCHIM ACTA : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21