000828993 001__ 828993
000828993 005__ 20220930130120.0
000828993 0247_ $$2doi$$a10.2136/sssaj2016.06.0181
000828993 0247_ $$2ISSN$$a0361-5995
000828993 0247_ $$2ISSN$$a1435-0661
000828993 0247_ $$2WOS$$aWOS:000400696900007
000828993 0247_ $$2altmetric$$aaltmetric:20488664
000828993 037__ $$aFZJ-2017-02810
000828993 041__ $$aEnglish
000828993 082__ $$a550
000828993 1001_ $$0P:(DE-Juel1)164361$$aSiebers, Nina$$b0$$eCorresponding author$$ufzj
000828993 245__ $$aClimatic Effects on Phosphorus Fractions of Native and Cultivated North American Grassland Soils
000828993 260__ $$aMadison, Wis.$$bSSSA$$c2017
000828993 3367_ $$2DRIVER$$aarticle
000828993 3367_ $$2DataCite$$aOutput Types/Journal article
000828993 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1493193925_1225
000828993 3367_ $$2BibTeX$$aARTICLE
000828993 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828993 3367_ $$00$$2EndNote$$aJournal Article
000828993 520__ $$aThe climatic regime influences the turnover of P in soils, resulting in shifts in P fractions of different bonding forms. Here, we aimed at (i) identifying possible changes in P fractions as related to mean annual temperature (MAT) and mean annual precipitation (MAP), as well as (ii) elucidating how these patterns change under long-term agriculture. We analyzed different P fractions after sequential extraction according to the Hedley procedure from the top 10 cm of 18 native grassland sites and adjacent long-term agricultural fields along a temperature and precipitation transect from central Saskatoon to south Texas. The analyses were performed on bulk soils and clay fractions. The results showed that total P (Ptot) concentrations decreased with increasing MAT but were not clearly related to MAP. The contributions of total inorganic P (Pitot) and total organic P (Potot) to Ptot did neither change with MAT nor with MAP. The proportions of individual soil fractions were shifted from the labile and easily extractable P bonding forms to the more stable, residual P fractions with increasing annual temperature. Arable cropping induced loss of organic P (Po). The relationships to the climatic factors were sustained for the arable soil, but better reflected in the clay fractions than in the bulk soil. We conclude that there is a gross pattern of soil P distribution related to the climate, likely reflecting the increased biological processing as well as and progressing weathering and neoformation of secondary mineral phases as annual temperatures rise.
000828993 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000828993 588__ $$aDataset connected to CrossRef
000828993 7001_ $$0P:(DE-HGF)0$$aSumann, Matthias$$b1
000828993 7001_ $$0P:(DE-HGF)0$$aKaiser, Klaus$$b2
000828993 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b3$$ufzj
000828993 773__ $$0PERI:(DE-600)1481691-x$$a10.2136/sssaj2016.06.0181$$gVol. 0, no. 0, p. 0 -$$n2$$p299-309$$tSoil Science Society of America journal$$v81$$x0361-5995$$y2017
000828993 8564_ $$uhttps://juser.fz-juelich.de/record/828993/files/sssaj-81-2-299.pdf$$yRestricted
000828993 8564_ $$uhttps://juser.fz-juelich.de/record/828993/files/sssaj-81-2-299.gif?subformat=icon$$xicon$$yRestricted
000828993 8564_ $$uhttps://juser.fz-juelich.de/record/828993/files/sssaj-81-2-299.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828993 8564_ $$uhttps://juser.fz-juelich.de/record/828993/files/sssaj-81-2-299.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828993 8564_ $$uhttps://juser.fz-juelich.de/record/828993/files/sssaj-81-2-299.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828993 8564_ $$uhttps://juser.fz-juelich.de/record/828993/files/sssaj-81-2-299.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828993 8767_ $$8584036$$92017-03-31$$d2017-04-07$$eAPC$$jZahlung erfolgt$$zUSD 400,-
000828993 909CO $$ooai:juser.fz-juelich.de:828993$$pVDB:Earth_Environment$$pVDB$$pOpenAPC$$popenCost
000828993 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164361$$aForschungszentrum Jülich$$b0$$kFZJ
000828993 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b3$$kFZJ
000828993 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000828993 9141_ $$y2017
000828993 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828993 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000828993 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000828993 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOIL SCI SOC AM J : 2015
000828993 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828993 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828993 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828993 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000828993 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000828993 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000828993 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000828993 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828993 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000828993 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828993 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000828993 980__ $$ajournal
000828993 980__ $$aVDB
000828993 980__ $$aUNRESTRICTED
000828993 980__ $$aI:(DE-Juel1)IBG-3-20101118
000828993 980__ $$aAPC