001     828993
005     20220930130120.0
024 7 _ |a 10.2136/sssaj2016.06.0181
|2 doi
024 7 _ |a 0361-5995
|2 ISSN
024 7 _ |a 1435-0661
|2 ISSN
024 7 _ |a WOS:000400696900007
|2 WOS
024 7 _ |a altmetric:20488664
|2 altmetric
037 _ _ |a FZJ-2017-02810
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Siebers, Nina
|0 P:(DE-Juel1)164361
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Climatic Effects on Phosphorus Fractions of Native and Cultivated North American Grassland Soils
260 _ _ |a Madison, Wis.
|c 2017
|b SSSA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1493193925_1225
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The climatic regime influences the turnover of P in soils, resulting in shifts in P fractions of different bonding forms. Here, we aimed at (i) identifying possible changes in P fractions as related to mean annual temperature (MAT) and mean annual precipitation (MAP), as well as (ii) elucidating how these patterns change under long-term agriculture. We analyzed different P fractions after sequential extraction according to the Hedley procedure from the top 10 cm of 18 native grassland sites and adjacent long-term agricultural fields along a temperature and precipitation transect from central Saskatoon to south Texas. The analyses were performed on bulk soils and clay fractions. The results showed that total P (Ptot) concentrations decreased with increasing MAT but were not clearly related to MAP. The contributions of total inorganic P (Pitot) and total organic P (Potot) to Ptot did neither change with MAT nor with MAP. The proportions of individual soil fractions were shifted from the labile and easily extractable P bonding forms to the more stable, residual P fractions with increasing annual temperature. Arable cropping induced loss of organic P (Po). The relationships to the climatic factors were sustained for the arable soil, but better reflected in the clay fractions than in the bulk soil. We conclude that there is a gross pattern of soil P distribution related to the climate, likely reflecting the increased biological processing as well as and progressing weathering and neoformation of secondary mineral phases as annual temperatures rise.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Sumann, Matthias
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kaiser, Klaus
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Amelung, Wulf
|0 P:(DE-Juel1)129427
|b 3
|u fzj
773 _ _ |a 10.2136/sssaj2016.06.0181
|g Vol. 0, no. 0, p. 0 -
|0 PERI:(DE-600)1481691-x
|n 2
|p 299-309
|t Soil Science Society of America journal
|v 81
|y 2017
|x 0361-5995
856 4 _ |u https://juser.fz-juelich.de/record/828993/files/sssaj-81-2-299.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/828993/files/sssaj-81-2-299.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/828993/files/sssaj-81-2-299.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/828993/files/sssaj-81-2-299.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/828993/files/sssaj-81-2-299.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/828993/files/sssaj-81-2-299.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828993
|p OpenAPC
|p VDB
|p VDB:Earth_Environment
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164361
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129427
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOIL SCI SOC AM J : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21