000828997 001__ 828997
000828997 005__ 20240712113120.0
000828997 0247_ $$2doi$$a10.1021/acsami.6b07687
000828997 0247_ $$2ISSN$$a1944-8244
000828997 0247_ $$2ISSN$$a1944-8252
000828997 0247_ $$2WOS$$aWOS:000384951800038
000828997 037__ $$aFZJ-2017-02814
000828997 082__ $$a540
000828997 1001_ $$0P:(DE-HGF)0$$aCao, Xia$$b0$$eCorresponding author
000828997 245__ $$aHigh Voltage LiNi $_{0.5}$ Mn $_{1.5}$ O $_{4}$ /Li $_{4}$ Ti $_{5}$ O $_{12}$ Lithium Ion Cells at Elevated Temperatures: Carbonate- versus Ionic Liquid-Based Electrolytes
000828997 260__ $$aWashington, DC$$bSoc.$$c2016
000828997 3367_ $$2DRIVER$$aarticle
000828997 3367_ $$2DataCite$$aOutput Types/Journal article
000828997 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491571677_653
000828997 3367_ $$2BibTeX$$aARTICLE
000828997 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828997 3367_ $$00$$2EndNote$$aJournal Article
000828997 520__ $$aThanks to its high operating voltage, the LiNi0.5Mn1.5O4 (LNMO) spinel represents a promising next-generation cathode material candidate for Lithium ion batteries. However, LNMO-based full-cells with organic carbonate solvent electrolytes suffer from severe capacity fading issues, associated with electrolyte decomposition and concurrent degradative reactions at the electrode/electrolyte interface, especially at elevated temperatures. As promising alternatives, two selected LiTFSI/pyrrolidinium bis(trifluoromethane-sulfonyl)imide room temperature ionic liquid (RTIL) based electrolytes with inherent thermal stability were investigated in this work. Linear sweep voltammetry (LSV) profiles of the investigated LiTFSI/RTIL electrolytes display much higher oxidative stability compared to the state-of-the-art LiPF6/organic carbonate based electrolyte at elevated temperatures. Cycling performance of the LNMO/Li4Ti5O12 (LTO) full-cells with LiTFSI/RTIL electrolytes reveals remarkable improvements with respect to capacity retention and Coulombic efficiency. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns indicate maintained pristine morphology and structure of LNMO particles after 50 cycles at 0.5C. The investigated LiTFSI/RTIL based electrolytes outperform the LiPF6/organic carbonate-based electrolyte in terms of cycling performance in LNMO/LTO full-cells at elevated temperatures.
000828997 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000828997 588__ $$aDataset connected to CrossRef
000828997 7001_ $$0P:(DE-Juel1)169319$$aHe, Xin$$b1$$ufzj
000828997 7001_ $$0P:(DE-HGF)0$$aWang, Jun$$b2
000828997 7001_ $$0P:(DE-HGF)0$$aLiu, Haidong$$b3
000828997 7001_ $$0P:(DE-HGF)0$$aRöser, Stephan$$b4
000828997 7001_ $$0P:(DE-Juel1)167131$$aRezaei Rad, Babak$$b5$$ufzj
000828997 7001_ $$0P:(DE-HGF)0$$aEvertz, Marco$$b6
000828997 7001_ $$0P:(DE-HGF)0$$aStreipert, Benjamin$$b7
000828997 7001_ $$0P:(DE-HGF)0$$aLi, Jie$$b8
000828997 7001_ $$0P:(DE-HGF)0$$aWagner, Ralf$$b9
000828997 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b10$$eCorresponding author$$ufzj
000828997 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b11$$ufzj
000828997 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.6b07687$$gVol. 8, no. 39, p. 25971 - 25978$$n39$$p25971 - 25978$$tACS applied materials & interfaces$$v8$$x1944-8252$$y2016
000828997 8564_ $$uhttps://juser.fz-juelich.de/record/828997/files/acsami.6b07687.pdf$$yRestricted
000828997 8564_ $$uhttps://juser.fz-juelich.de/record/828997/files/acsami.6b07687.gif?subformat=icon$$xicon$$yRestricted
000828997 8564_ $$uhttps://juser.fz-juelich.de/record/828997/files/acsami.6b07687.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828997 8564_ $$uhttps://juser.fz-juelich.de/record/828997/files/acsami.6b07687.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828997 8564_ $$uhttps://juser.fz-juelich.de/record/828997/files/acsami.6b07687.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828997 8564_ $$uhttps://juser.fz-juelich.de/record/828997/files/acsami.6b07687.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828997 909CO $$ooai:juser.fz-juelich.de:828997$$pVDB
000828997 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169319$$aForschungszentrum Jülich$$b1$$kFZJ
000828997 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167131$$aForschungszentrum Jülich$$b5$$kFZJ
000828997 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b10$$kFZJ
000828997 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b11$$kFZJ
000828997 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000828997 9141_ $$y2017
000828997 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828997 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828997 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000828997 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2015
000828997 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828997 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828997 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828997 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828997 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828997 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000828997 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2015
000828997 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000828997 980__ $$ajournal
000828997 980__ $$aVDB
000828997 980__ $$aI:(DE-Juel1)IEK-12-20141217
000828997 980__ $$aUNRESTRICTED
000828997 981__ $$aI:(DE-Juel1)IMD-4-20141217