000828998 001__ 828998
000828998 005__ 20240712113116.0
000828998 0247_ $$2doi$$a10.1039/C6CP04217A
000828998 0247_ $$2ISSN$$a1463-9076
000828998 0247_ $$2ISSN$$a1463-9084
000828998 0247_ $$2Handle$$a2128/14157
000828998 0247_ $$2WOS$$aWOS:000386668200002
000828998 037__ $$aFZJ-2017-02815
000828998 082__ $$a540
000828998 1001_ $$0P:(DE-Juel1)167371$$aLesch, Volker$$b0
000828998 245__ $$aAtomistic insights into deep eutectic electrolytes: the influence of urea on the electrolyte salt LiTFSI in view of electrochemical applications
000828998 260__ $$aCambridge$$bRSC Publ.$$c2016
000828998 3367_ $$2DRIVER$$aarticle
000828998 3367_ $$2DataCite$$aOutput Types/Journal article
000828998 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491571819_857
000828998 3367_ $$2BibTeX$$aARTICLE
000828998 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828998 3367_ $$00$$2EndNote$$aJournal Article
000828998 520__ $$aThe influence of urea on the conducting salt lithium bis-(trifluoromethanesulfonyl)-imide (LiTFSI) in terms of lithium ion coordination numbers and lithium ion transport properties is studied via atomistic molecular dynamics simulations. Our results indicate that the presence of urea favors the formation of a deep eutectic electrolyte with pronounced ion conductivities which can be explained by a competition between urea and TFSI in occupying the first coordination shell around lithium ions. All simulation findings verify that high urea concentrations lead to a significant increase of ionic diffusivities and an occurrence of relatively high lithium transference numbers in good agreement with experimental results. The outcomes of our study point at the possible application of deep eutectic electrolytes as ion conducting materials in lithium ion batteries.
000828998 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000828998 588__ $$aDataset connected to CrossRef
000828998 7001_ $$0P:(DE-HGF)0$$aHeuer, Andreas$$b1
000828998 7001_ $$0P:(DE-Juel1)167131$$aRezaei Rad, Babak$$b2$$ufzj
000828998 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3$$ufzj
000828998 7001_ $$0P:(DE-HGF)0$$aSmiatek, Jens$$b4$$eCorresponding author
000828998 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C6CP04217A$$gVol. 18, no. 41, p. 28403 - 28408$$n41$$p28403 - 28408$$tPhysical chemistry, chemical physics$$v18$$x1463-9084$$y2016
000828998 8564_ $$uhttps://juser.fz-juelich.de/record/828998/files/c6cp04217a.pdf$$yOpenAccess
000828998 8564_ $$uhttps://juser.fz-juelich.de/record/828998/files/c6cp04217a.gif?subformat=icon$$xicon$$yOpenAccess
000828998 8564_ $$uhttps://juser.fz-juelich.de/record/828998/files/c6cp04217a.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000828998 8564_ $$uhttps://juser.fz-juelich.de/record/828998/files/c6cp04217a.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000828998 8564_ $$uhttps://juser.fz-juelich.de/record/828998/files/c6cp04217a.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000828998 8564_ $$uhttps://juser.fz-juelich.de/record/828998/files/c6cp04217a.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000828998 909CO $$ooai:juser.fz-juelich.de:828998$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000828998 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167131$$aForschungszentrum Jülich$$b2$$kFZJ
000828998 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
000828998 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000828998 9141_ $$y2017
000828998 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000828998 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828998 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000828998 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2015
000828998 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828998 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828998 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828998 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000828998 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000828998 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828998 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000828998 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828998 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000828998 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828998 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000828998 9801_ $$aFullTexts
000828998 980__ $$ajournal
000828998 980__ $$aVDB
000828998 980__ $$aUNRESTRICTED
000828998 980__ $$aI:(DE-Juel1)IEK-12-20141217
000828998 981__ $$aI:(DE-Juel1)IMD-4-20141217