000828999 001__ 828999
000828999 005__ 20240712113120.0
000828999 0247_ $$2doi$$a10.1021/acs.chemmater.6b02895
000828999 0247_ $$2ISSN$$a0897-4756
000828999 0247_ $$2ISSN$$a1520-5002
000828999 0247_ $$2WOS$$aWOS:000386421900006
000828999 0247_ $$2altmetric$$aaltmetric:12432390
000828999 037__ $$aFZJ-2017-02816
000828999 082__ $$a540
000828999 1001_ $$0P:(DE-Juel1)172048$$aMeister, Paul$$b0$$ufzj
000828999 245__ $$aBest Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency
000828999 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2016
000828999 3367_ $$2DRIVER$$aarticle
000828999 3367_ $$2DataCite$$aOutput Types/Journal article
000828999 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491801647_30239
000828999 3367_ $$2BibTeX$$aARTICLE
000828999 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828999 3367_ $$00$$2EndNote$$aJournal Article
000828999 520__ $$aIn order to increase the energy content of lithium ion batteries (LIBs), researchers worldwide focus on high specific energy (Wh/kg) and energy density (Wh/L) anode and cathode materials. However, most of the attention is primarily paid to the specific gravimetric and/or volumetric capacities of these materials, while other key parameters are often neglected. For practical applications, in particular for large size battery cells, the Coulombic efficiency (CE), voltage efficiency (VE), and energy efficiency (EE) have to be considered, which we point out in this work by comparing numerous LIB active materials. For all presented active materials, energy inefficiency is mainly caused by a voltage inefficiency, which in turn is affected by the voltage hysteresis between the charge and discharge curves. Hence, this study could show that materials with larger voltage hysteresis such as the ZnFe2O4 (ZFO) anode or the Li-rich cathode material exhibit also a lower VE and EE than for instance graphite and LiNi0.5Mn1.5O4. Furthermore, from the accumulated EE losses the resulting “extra energy costs” are calculated based on industry and domestic electricity costs in Germany, in Japan and in the U.S.A. In particular, in countries with higher electricity costs such as Germany, the accumulated extra energy, which is necessary to compensate the energy inefficiency while retaining a certain energy level in the electrode material, has a stronger impact on the extra energy costs and thus on the total cost of ownership of the battery cell system.
000828999 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000828999 588__ $$aDataset connected to CrossRef
000828999 7001_ $$0P:(DE-HGF)0$$aJia, Haiping$$b1
000828999 7001_ $$0P:(DE-HGF)0$$aLi, Jie$$b2
000828999 7001_ $$0P:(DE-HGF)0$$aKloepsch, Richard$$b3
000828999 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$eCorresponding author$$ufzj
000828999 7001_ $$0P:(DE-HGF)0$$aPlacke, Tobias$$b5$$eCorresponding author
000828999 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.6b02895$$gVol. 28, no. 20, p. 7203 - 7217$$n20$$p7203 - 7217$$tChemistry of materials$$v28$$x1520-5002$$y2016
000828999 8564_ $$uhttps://juser.fz-juelich.de/record/828999/files/acs.chemmater.6b02895.pdf$$yRestricted
000828999 8564_ $$uhttps://juser.fz-juelich.de/record/828999/files/acs.chemmater.6b02895.gif?subformat=icon$$xicon$$yRestricted
000828999 8564_ $$uhttps://juser.fz-juelich.de/record/828999/files/acs.chemmater.6b02895.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828999 8564_ $$uhttps://juser.fz-juelich.de/record/828999/files/acs.chemmater.6b02895.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828999 8564_ $$uhttps://juser.fz-juelich.de/record/828999/files/acs.chemmater.6b02895.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828999 8564_ $$uhttps://juser.fz-juelich.de/record/828999/files/acs.chemmater.6b02895.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828999 909CO $$ooai:juser.fz-juelich.de:828999$$pVDB
000828999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172048$$aForschungszentrum Jülich$$b0$$kFZJ
000828999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
000828999 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000828999 9141_ $$y2017
000828999 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000828999 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2015
000828999 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828999 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828999 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000828999 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000828999 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828999 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828999 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828999 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828999 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828999 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000828999 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM MATER : 2015
000828999 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000828999 980__ $$ajournal
000828999 980__ $$aVDB
000828999 980__ $$aI:(DE-Juel1)IEK-12-20141217
000828999 980__ $$aUNRESTRICTED
000828999 981__ $$aI:(DE-Juel1)IMD-4-20141217