001     828999
005     20240712113120.0
024 7 _ |a 10.1021/acs.chemmater.6b02895
|2 doi
024 7 _ |a 0897-4756
|2 ISSN
024 7 _ |a 1520-5002
|2 ISSN
024 7 _ |a WOS:000386421900006
|2 WOS
024 7 _ |a altmetric:12432390
|2 altmetric
037 _ _ |a FZJ-2017-02816
082 _ _ |a 540
100 1 _ |a Meister, Paul
|0 P:(DE-Juel1)172048
|b 0
|u fzj
245 _ _ |a Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency
260 _ _ |a Washington, DC
|c 2016
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491801647_30239
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In order to increase the energy content of lithium ion batteries (LIBs), researchers worldwide focus on high specific energy (Wh/kg) and energy density (Wh/L) anode and cathode materials. However, most of the attention is primarily paid to the specific gravimetric and/or volumetric capacities of these materials, while other key parameters are often neglected. For practical applications, in particular for large size battery cells, the Coulombic efficiency (CE), voltage efficiency (VE), and energy efficiency (EE) have to be considered, which we point out in this work by comparing numerous LIB active materials. For all presented active materials, energy inefficiency is mainly caused by a voltage inefficiency, which in turn is affected by the voltage hysteresis between the charge and discharge curves. Hence, this study could show that materials with larger voltage hysteresis such as the ZnFe2O4 (ZFO) anode or the Li-rich cathode material exhibit also a lower VE and EE than for instance graphite and LiNi0.5Mn1.5O4. Furthermore, from the accumulated EE losses the resulting “extra energy costs” are calculated based on industry and domestic electricity costs in Germany, in Japan and in the U.S.A. In particular, in countries with higher electricity costs such as Germany, the accumulated extra energy, which is necessary to compensate the energy inefficiency while retaining a certain energy level in the electrode material, has a stronger impact on the extra energy costs and thus on the total cost of ownership of the battery cell system.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jia, Haiping
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Li, Jie
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kloepsch, Richard
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 4
|e Corresponding author
|u fzj
700 1 _ |a Placke, Tobias
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1021/acs.chemmater.6b02895
|g Vol. 28, no. 20, p. 7203 - 7217
|0 PERI:(DE-600)1500399-1
|n 20
|p 7203 - 7217
|t Chemistry of materials
|v 28
|y 2016
|x 1520-5002
856 4 _ |u https://juser.fz-juelich.de/record/828999/files/acs.chemmater.6b02895.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828999/files/acs.chemmater.6b02895.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828999/files/acs.chemmater.6b02895.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828999/files/acs.chemmater.6b02895.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828999/files/acs.chemmater.6b02895.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828999/files/acs.chemmater.6b02895.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828999
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172048
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM MATER : 2015
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21