000829000 001__ 829000 000829000 005__ 20240712113120.0 000829000 0247_ $$2doi$$a10.1016/j.jpowsour.2016.09.120 000829000 0247_ $$2ISSN$$a0378-7753 000829000 0247_ $$2ISSN$$a1873-2755 000829000 0247_ $$2WOS$$aWOS:000387526100001 000829000 037__ $$aFZJ-2017-02817 000829000 082__ $$a620 000829000 1001_ $$0P:(DE-HGF)0$$aFriesen, Alex$$b0 000829000 245__ $$aImpact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis 000829000 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2016 000829000 3367_ $$2DRIVER$$aarticle 000829000 3367_ $$2DataCite$$aOutput Types/Journal article 000829000 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491802005_30238 000829000 3367_ $$2BibTeX$$aARTICLE 000829000 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000829000 3367_ $$00$$2EndNote$$aJournal Article 000829000 520__ $$aThe impact of cycling at low temperatures on the thermal and mechanical abuse behavior of commercial 18650-type lithium ion cells was compared to fresh cells. Post-mortem analyses revealed a deposition of high surface area lithium (HSAL) metal on the graphite surface accompanied by severe electrolyte decomposition. Heat wait search (HWS) tests in an accelerating rate calorimeter (ARC) were performed to investigate the thermal abuse behavior of aged and fresh cells under quasi-adiabatic conditions, showing a strong shift of the onset temperature for exothermic reactions. HSAL deposition promotes the reduction of the carbonate based electrolyte due to the high reactivity of lithium metal with high surface area, leading to a thermally induced decomposition of the electrolyte to produce volatile gaseous products. Nail penetration tests showed a change in the thermal runaway (TR) behavior affected by the decomposition reaction. This study indicates a greater thermal hazard for LIB cells at higher SOC and experiencing aging at low temperature. 000829000 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000829000 588__ $$aDataset connected to CrossRef 000829000 7001_ $$0P:(DE-HGF)0$$aHorsthemke, Fabian$$b1 000829000 7001_ $$0P:(DE-HGF)0$$aMönnighoff, Xaver$$b2 000829000 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b3 000829000 7001_ $$0P:(DE-HGF)0$$aKrafft, Roman$$b4 000829000 7001_ $$0P:(DE-HGF)0$$aBörner, Markus$$b5 000829000 7001_ $$0P:(DE-HGF)0$$aRisthaus, Tim$$b6 000829000 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b7$$eCorresponding author 000829000 7001_ $$0P:(DE-HGF)0$$aSchappacher, Falko M.$$b8$$eCorresponding author 000829000 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2016.09.120$$gVol. 334, p. 1 - 11$$p1 - 11$$tJournal of power sources$$v334$$x0378-7753$$y2016 000829000 8564_ $$uhttps://juser.fz-juelich.de/record/829000/files/1-s2.0-S0378775316313106-main.pdf$$yRestricted 000829000 8564_ $$uhttps://juser.fz-juelich.de/record/829000/files/1-s2.0-S0378775316313106-main.gif?subformat=icon$$xicon$$yRestricted 000829000 8564_ $$uhttps://juser.fz-juelich.de/record/829000/files/1-s2.0-S0378775316313106-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000829000 8564_ $$uhttps://juser.fz-juelich.de/record/829000/files/1-s2.0-S0378775316313106-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000829000 8564_ $$uhttps://juser.fz-juelich.de/record/829000/files/1-s2.0-S0378775316313106-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000829000 8564_ $$uhttps://juser.fz-juelich.de/record/829000/files/1-s2.0-S0378775316313106-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000829000 909CO $$ooai:juser.fz-juelich.de:829000$$pVDB 000829000 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b3$$kFZJ 000829000 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b7$$kFZJ 000829000 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000829000 9141_ $$y2017 000829000 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015 000829000 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000829000 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000829000 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000829000 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000829000 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000829000 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000829000 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000829000 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000829000 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000829000 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000829000 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000829000 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015 000829000 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 000829000 980__ $$ajournal 000829000 980__ $$aVDB 000829000 980__ $$aI:(DE-Juel1)IEK-12-20141217 000829000 980__ $$aUNRESTRICTED 000829000 981__ $$aI:(DE-Juel1)IMD-4-20141217