000829000 001__ 829000
000829000 005__ 20240712113120.0
000829000 0247_ $$2doi$$a10.1016/j.jpowsour.2016.09.120
000829000 0247_ $$2ISSN$$a0378-7753
000829000 0247_ $$2ISSN$$a1873-2755
000829000 0247_ $$2WOS$$aWOS:000387526100001
000829000 037__ $$aFZJ-2017-02817
000829000 082__ $$a620
000829000 1001_ $$0P:(DE-HGF)0$$aFriesen, Alex$$b0
000829000 245__ $$aImpact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis
000829000 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2016
000829000 3367_ $$2DRIVER$$aarticle
000829000 3367_ $$2DataCite$$aOutput Types/Journal article
000829000 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491802005_30238
000829000 3367_ $$2BibTeX$$aARTICLE
000829000 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829000 3367_ $$00$$2EndNote$$aJournal Article
000829000 520__ $$aThe impact of cycling at low temperatures on the thermal and mechanical abuse behavior of commercial 18650-type lithium ion cells was compared to fresh cells. Post-mortem analyses revealed a deposition of high surface area lithium (HSAL) metal on the graphite surface accompanied by severe electrolyte decomposition. Heat wait search (HWS) tests in an accelerating rate calorimeter (ARC) were performed to investigate the thermal abuse behavior of aged and fresh cells under quasi-adiabatic conditions, showing a strong shift of the onset temperature for exothermic reactions. HSAL deposition promotes the reduction of the carbonate based electrolyte due to the high reactivity of lithium metal with high surface area, leading to a thermally induced decomposition of the electrolyte to produce volatile gaseous products. Nail penetration tests showed a change in the thermal runaway (TR) behavior affected by the decomposition reaction. This study indicates a greater thermal hazard for LIB cells at higher SOC and experiencing aging at low temperature.
000829000 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000829000 588__ $$aDataset connected to CrossRef
000829000 7001_ $$0P:(DE-HGF)0$$aHorsthemke, Fabian$$b1
000829000 7001_ $$0P:(DE-HGF)0$$aMönnighoff, Xaver$$b2
000829000 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b3
000829000 7001_ $$0P:(DE-HGF)0$$aKrafft, Roman$$b4
000829000 7001_ $$0P:(DE-HGF)0$$aBörner, Markus$$b5
000829000 7001_ $$0P:(DE-HGF)0$$aRisthaus, Tim$$b6
000829000 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b7$$eCorresponding author
000829000 7001_ $$0P:(DE-HGF)0$$aSchappacher, Falko M.$$b8$$eCorresponding author
000829000 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2016.09.120$$gVol. 334, p. 1 - 11$$p1 - 11$$tJournal of power sources$$v334$$x0378-7753$$y2016
000829000 8564_ $$uhttps://juser.fz-juelich.de/record/829000/files/1-s2.0-S0378775316313106-main.pdf$$yRestricted
000829000 8564_ $$uhttps://juser.fz-juelich.de/record/829000/files/1-s2.0-S0378775316313106-main.gif?subformat=icon$$xicon$$yRestricted
000829000 8564_ $$uhttps://juser.fz-juelich.de/record/829000/files/1-s2.0-S0378775316313106-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000829000 8564_ $$uhttps://juser.fz-juelich.de/record/829000/files/1-s2.0-S0378775316313106-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000829000 8564_ $$uhttps://juser.fz-juelich.de/record/829000/files/1-s2.0-S0378775316313106-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000829000 8564_ $$uhttps://juser.fz-juelich.de/record/829000/files/1-s2.0-S0378775316313106-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000829000 909CO $$ooai:juser.fz-juelich.de:829000$$pVDB
000829000 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b3$$kFZJ
000829000 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b7$$kFZJ
000829000 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000829000 9141_ $$y2017
000829000 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015
000829000 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829000 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829000 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000829000 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829000 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829000 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829000 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829000 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829000 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829000 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829000 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000829000 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015
000829000 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000829000 980__ $$ajournal
000829000 980__ $$aVDB
000829000 980__ $$aI:(DE-Juel1)IEK-12-20141217
000829000 980__ $$aUNRESTRICTED
000829000 981__ $$aI:(DE-Juel1)IMD-4-20141217