001     829000
005     20240712113120.0
024 7 _ |a 10.1016/j.jpowsour.2016.09.120
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a WOS:000387526100001
|2 WOS
037 _ _ |a FZJ-2017-02817
082 _ _ |a 620
100 1 _ |a Friesen, Alex
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis
260 _ _ |a New York, NY [u.a.]
|c 2016
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491802005_30238
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The impact of cycling at low temperatures on the thermal and mechanical abuse behavior of commercial 18650-type lithium ion cells was compared to fresh cells. Post-mortem analyses revealed a deposition of high surface area lithium (HSAL) metal on the graphite surface accompanied by severe electrolyte decomposition. Heat wait search (HWS) tests in an accelerating rate calorimeter (ARC) were performed to investigate the thermal abuse behavior of aged and fresh cells under quasi-adiabatic conditions, showing a strong shift of the onset temperature for exothermic reactions. HSAL deposition promotes the reduction of the carbonate based electrolyte due to the high reactivity of lithium metal with high surface area, leading to a thermally induced decomposition of the electrolyte to produce volatile gaseous products. Nail penetration tests showed a change in the thermal runaway (TR) behavior affected by the decomposition reaction. This study indicates a greater thermal hazard for LIB cells at higher SOC and experiencing aging at low temperature.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Horsthemke, Fabian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mönnighoff, Xaver
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Brunklaus, Gunther
|0 P:(DE-Juel1)172047
|b 3
700 1 _ |a Krafft, Roman
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Börner, Markus
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Risthaus, Tim
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 7
|e Corresponding author
700 1 _ |a Schappacher, Falko M.
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1016/j.jpowsour.2016.09.120
|g Vol. 334, p. 1 - 11
|0 PERI:(DE-600)1491915-1
|p 1 - 11
|t Journal of power sources
|v 334
|y 2016
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/829000/files/1-s2.0-S0378775316313106-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829000/files/1-s2.0-S0378775316313106-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829000/files/1-s2.0-S0378775316313106-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829000/files/1-s2.0-S0378775316313106-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829000/files/1-s2.0-S0378775316313106-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829000/files/1-s2.0-S0378775316313106-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:829000
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172047
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2015
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21