000829001 001__ 829001
000829001 005__ 20240712113120.0
000829001 0247_ $$2doi$$a10.1016/j.elecom.2016.08.003
000829001 0247_ $$2ISSN$$a1388-2481
000829001 0247_ $$2ISSN$$a1873-1902
000829001 0247_ $$2WOS$$aWOS:000383445000012
000829001 037__ $$aFZJ-2017-02818
000829001 082__ $$a540
000829001 1001_ $$0P:(DE-Juel1)172048$$aMeister, Paul$$b0$$ufzj
000829001 245__ $$aNew insights into the uptake/release of FTFSI − anions into graphite by means of in situ powder X-ray diffraction
000829001 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000829001 3367_ $$2DRIVER$$aarticle
000829001 3367_ $$2DataCite$$aOutput Types/Journal article
000829001 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491802106_30238
000829001 3367_ $$2BibTeX$$aARTICLE
000829001 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829001 3367_ $$00$$2EndNote$$aJournal Article
000829001 520__ $$aThe redox-amphoteric character of graphite enables its utilization as intercalation host for various types of cations and anions to form either donor-type or acceptor-type graphite intercalation compounds (GICs), respectively. While the donor-type GIC LiC6 is commonly used in the field of lithium ion batteries, acceptor-type GICs were suggested for application in dual-ion cells. In this contribution, the electrochemical intercalation/de-intercalation of fluorosulfonyl-(trifluoromethanesulfonyl) imide (FTFSI−) anions into graphite was studied for dual-ion cells during a cyclic voltammetry experiment using in situ powder X-ray diffraction. For the GICs, a series of most dominant stages could be assigned and the periodic repeat distance as well as the FTFSI− gallery height/gallery expansion were determined. The obtained dominant stage numbers of the formed GICs were correlated to cell voltage ranges. Upon charge, a transition of the different stages was observed, while upon discharge stage 1 was still preserved for a broad voltage range. These novel findings indicate different mechanisms for the uptake and release of the anions.
000829001 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000829001 588__ $$aDataset connected to CrossRef
000829001 7001_ $$0P:(DE-HGF)0$$aSchmuelling, Guido$$b1
000829001 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b2$$eCorresponding author$$ufzj
000829001 7001_ $$0P:(DE-HGF)0$$aPlacke, Tobias$$b3$$eCorresponding author
000829001 773__ $$0PERI:(DE-600)2027290-X$$a10.1016/j.elecom.2016.08.003$$gVol. 71, p. 52 - 55$$p52 - 55$$tElectrochemistry communications$$v71$$x1388-2481$$y2016
000829001 8564_ $$uhttps://juser.fz-juelich.de/record/829001/files/1-s2.0-S1388248116301795-main.pdf$$yRestricted
000829001 8564_ $$uhttps://juser.fz-juelich.de/record/829001/files/1-s2.0-S1388248116301795-main.gif?subformat=icon$$xicon$$yRestricted
000829001 8564_ $$uhttps://juser.fz-juelich.de/record/829001/files/1-s2.0-S1388248116301795-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000829001 8564_ $$uhttps://juser.fz-juelich.de/record/829001/files/1-s2.0-S1388248116301795-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000829001 8564_ $$uhttps://juser.fz-juelich.de/record/829001/files/1-s2.0-S1388248116301795-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000829001 8564_ $$uhttps://juser.fz-juelich.de/record/829001/files/1-s2.0-S1388248116301795-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000829001 909CO $$ooai:juser.fz-juelich.de:829001$$pVDB
000829001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172048$$aForschungszentrum Jülich$$b0$$kFZJ
000829001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b2$$kFZJ
000829001 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000829001 9141_ $$y2017
000829001 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000829001 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHEM COMMUN : 2015
000829001 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829001 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829001 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829001 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829001 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829001 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829001 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829001 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829001 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829001 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000829001 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000829001 980__ $$ajournal
000829001 980__ $$aVDB
000829001 980__ $$aI:(DE-Juel1)IEK-12-20141217
000829001 980__ $$aUNRESTRICTED
000829001 981__ $$aI:(DE-Juel1)IMD-4-20141217