000829002 001__ 829002
000829002 005__ 20240712113116.0
000829002 0247_ $$2doi$$a10.1016/j.jpowsour.2016.07.102
000829002 0247_ $$2ISSN$$a0378-7753
000829002 0247_ $$2ISSN$$a1873-2755
000829002 0247_ $$2WOS$$aWOS:000383293400013
000829002 037__ $$aFZJ-2017-02819
000829002 082__ $$a620
000829002 1001_ $$0P:(DE-HGF)0$$aBitsch, Boris$$b0$$eCorresponding author
000829002 245__ $$aCapillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes
000829002 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2016
000829002 3367_ $$2DRIVER$$aarticle
000829002 3367_ $$2DataCite$$aOutput Types/Journal article
000829002 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491802205_30230
000829002 3367_ $$2BibTeX$$aARTICLE
000829002 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829002 3367_ $$00$$2EndNote$$aJournal Article
000829002 520__ $$aWe introduce a novel formulation concept to prepare high capacity graphite electrodes for lithium ion batteries. The concept is based on the capillary suspension phenomenon: graphite and conductive agent are dispersed in an aqueous binder solution and the organic solvent octanol is added as immiscible, secondary fluid providing the formation of a sample-spanning network resulting in unique stability and coating properties. No additional processing steps compared to conventional slurry preparation are required. The resulting ultra-thick electrodes comprise mass loadings of about 16.5 mg cm−2, uniform layer thickness, and superior edge contours. The adjustment of mechanical energy input ensures uniform distribution of the conductive agent and sufficient electronic conductivity of the final dry composite electrode. The resulting pore structure is due to the stable network provided by the secondary fluid which evaporates residue-free during drying. Constant current-constant potential (CC-CP) cycling clearly indicates that the corresponding microstructure significantly improves the kinetics of reversible Li+ (de-) intercalation. A double layer electrode combining a conventionally prepared layer coated directly onto the Cu current collector with an upper layer stabilized with octanol was prepared applying wet-on-wet coating. CC-CP cycling data confirms that staged porosity within the electrode cross section results in superior electrochemical performance.
000829002 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000829002 588__ $$aDataset connected to CrossRef
000829002 7001_ $$0P:(DE-HGF)0$$aGallasch, Tobias$$b1
000829002 7001_ $$0P:(DE-HGF)0$$aSchroeder, Melanie$$b2
000829002 7001_ $$0P:(DE-HGF)0$$aBörner, Markus$$b3
000829002 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$ufzj
000829002 7001_ $$0P:(DE-HGF)0$$aWillenbacher, Norbert$$b5
000829002 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2016.07.102$$gVol. 328, p. 114 - 123$$p114 - 123$$tJournal of power sources$$v328$$x0378-7753$$y2016
000829002 8564_ $$uhttps://juser.fz-juelich.de/record/829002/files/1-s2.0-S0378775316309806-main.pdf$$yRestricted
000829002 8564_ $$uhttps://juser.fz-juelich.de/record/829002/files/1-s2.0-S0378775316309806-main.gif?subformat=icon$$xicon$$yRestricted
000829002 8564_ $$uhttps://juser.fz-juelich.de/record/829002/files/1-s2.0-S0378775316309806-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000829002 8564_ $$uhttps://juser.fz-juelich.de/record/829002/files/1-s2.0-S0378775316309806-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000829002 8564_ $$uhttps://juser.fz-juelich.de/record/829002/files/1-s2.0-S0378775316309806-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000829002 8564_ $$uhttps://juser.fz-juelich.de/record/829002/files/1-s2.0-S0378775316309806-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000829002 909CO $$ooai:juser.fz-juelich.de:829002$$pVDB
000829002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
000829002 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000829002 9141_ $$y2017
000829002 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015
000829002 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829002 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829002 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000829002 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829002 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829002 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829002 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829002 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829002 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829002 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829002 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000829002 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015
000829002 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000829002 980__ $$ajournal
000829002 980__ $$aVDB
000829002 980__ $$aI:(DE-Juel1)IEK-12-20141217
000829002 980__ $$aUNRESTRICTED
000829002 981__ $$aI:(DE-Juel1)IMD-4-20141217