001     829002
005     20240712113116.0
024 7 _ |a 10.1016/j.jpowsour.2016.07.102
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a WOS:000383293400013
|2 WOS
037 _ _ |a FZJ-2017-02819
082 _ _ |a 620
100 1 _ |a Bitsch, Boris
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes
260 _ _ |a New York, NY [u.a.]
|c 2016
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491802205_30230
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We introduce a novel formulation concept to prepare high capacity graphite electrodes for lithium ion batteries. The concept is based on the capillary suspension phenomenon: graphite and conductive agent are dispersed in an aqueous binder solution and the organic solvent octanol is added as immiscible, secondary fluid providing the formation of a sample-spanning network resulting in unique stability and coating properties. No additional processing steps compared to conventional slurry preparation are required. The resulting ultra-thick electrodes comprise mass loadings of about 16.5 mg cm−2, uniform layer thickness, and superior edge contours. The adjustment of mechanical energy input ensures uniform distribution of the conductive agent and sufficient electronic conductivity of the final dry composite electrode. The resulting pore structure is due to the stable network provided by the secondary fluid which evaporates residue-free during drying. Constant current-constant potential (CC-CP) cycling clearly indicates that the corresponding microstructure significantly improves the kinetics of reversible Li+ (de-) intercalation. A double layer electrode combining a conventionally prepared layer coated directly onto the Cu current collector with an upper layer stabilized with octanol was prepared applying wet-on-wet coating. CC-CP cycling data confirms that staged porosity within the electrode cross section results in superior electrochemical performance.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gallasch, Tobias
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schroeder, Melanie
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Börner, Markus
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 4
|u fzj
700 1 _ |a Willenbacher, Norbert
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.jpowsour.2016.07.102
|g Vol. 328, p. 114 - 123
|0 PERI:(DE-600)1491915-1
|p 114 - 123
|t Journal of power sources
|v 328
|y 2016
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/829002/files/1-s2.0-S0378775316309806-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829002/files/1-s2.0-S0378775316309806-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829002/files/1-s2.0-S0378775316309806-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829002/files/1-s2.0-S0378775316309806-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829002/files/1-s2.0-S0378775316309806-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829002/files/1-s2.0-S0378775316309806-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:829002
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2015
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21