000829003 001__ 829003
000829003 005__ 20240712113121.0
000829003 0247_ $$2doi$$a10.1002/admi.201600096
000829003 0247_ $$2WOS$$aWOS:000383782400005
000829003 0247_ $$2altmetric$$aaltmetric:21833425
000829003 037__ $$aFZJ-2017-02820
000829003 082__ $$a540
000829003 1001_ $$0P:(DE-HGF)0$$aWagner, Ralf$$b0$$eCorresponding author
000829003 245__ $$aCounterintuitive Role of Magnesium Salts as Effective Electrolyte Additives for High Voltage Lithium-Ion Batteries
000829003 260__ $$aWeinheim$$bWiley-VCH$$c2016
000829003 3367_ $$2DRIVER$$aarticle
000829003 3367_ $$2DataCite$$aOutput Types/Journal article
000829003 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491805925_30232
000829003 3367_ $$2BibTeX$$aARTICLE
000829003 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829003 3367_ $$00$$2EndNote$$aJournal Article
000829003 520__ $$aFurther development of high voltage lithium-ion batteries requires electrolyte formulations stable against oxidation or measures to generate a protective cathode/electrolyte interface (CEI) film. In the frame of this work, the actually counterintuitive concept of using metal ions as electrolyte additives to stabilize the CEI has proven to be successful. The addition of 1 wt% magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2) as electrolyte additive to a conventional LiPF6/organic carbonate electrolyte suppresses the oxidative decomposition of the bulk electrolyte as displayed in improved capacity retention, increased Coulombic efficiencies, and reduced self-discharge of LiNi1/3Mn1/3Co1/3O2 (NMC111)/Li half cells charged to the elevated upper cutoff potential of 4.6 V versus Li/Li+ at 20 °C. Moreover, the addition of Mg(TFSI)2 shows no adverse effect on the cycling performance of graphite anodes, as observed by good long-term cycling results of NMC111/graphite full cells. Ex situ analysis via X-ray photoelectron spectroscopy, scanning electron microscopy, time-of-flight secondary ion mass spectrometry, and electron energy loss spectroscopy of the harvested NMC111 electrodes after cycling indicate that the addition of Mg2+ ions leads to the formation of a CEI layer as a result of an increased hydrolysis reaction of the PF6 – anion.
000829003 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000829003 588__ $$aDataset connected to CrossRef
000829003 7001_ $$0P:(DE-HGF)0$$aStreipert, Benjamin$$b1
000829003 7001_ $$0P:(DE-HGF)0$$aKraft, Vadim$$b2
000829003 7001_ $$0P:(DE-HGF)0$$aReyes Jiménez, Antonia$$b3
000829003 7001_ $$0P:(DE-HGF)0$$aRöser, Stephan$$b4
000829003 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b5$$ufzj
000829003 7001_ $$0P:(DE-HGF)0$$aGallus, Dennis Roman$$b6
000829003 7001_ $$0P:(DE-HGF)0$$aBörner, Markus$$b7
000829003 7001_ $$0P:(DE-HGF)0$$aMayer, Christoph$$b8
000829003 7001_ $$0P:(DE-HGF)0$$aArlinghaus, Heinrich Franz$$b9
000829003 7001_ $$0P:(DE-HGF)0$$aKorth, Martin$$b10
000829003 7001_ $$0P:(DE-HGF)0$$aAmereller, Marius$$b11
000829003 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b12$$ufzj
000829003 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b13$$eCorresponding author$$ufzj
000829003 773__ $$0PERI:(DE-600)2750376-8$$a10.1002/admi.201600096$$gVol. 3, no. 15, p. 1600096 -$$n15$$p1600096 -$$tAdvanced materials interfaces$$v3$$x2196-7350$$y2016
000829003 8564_ $$uhttps://juser.fz-juelich.de/record/829003/files/Wagner_et_al-2016-Advanced_Materials_Interfaces.pdf$$yRestricted
000829003 8564_ $$uhttps://juser.fz-juelich.de/record/829003/files/Wagner_et_al-2016-Advanced_Materials_Interfaces.gif?subformat=icon$$xicon$$yRestricted
000829003 8564_ $$uhttps://juser.fz-juelich.de/record/829003/files/Wagner_et_al-2016-Advanced_Materials_Interfaces.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000829003 8564_ $$uhttps://juser.fz-juelich.de/record/829003/files/Wagner_et_al-2016-Advanced_Materials_Interfaces.jpg?subformat=icon-180$$xicon-180$$yRestricted
000829003 8564_ $$uhttps://juser.fz-juelich.de/record/829003/files/Wagner_et_al-2016-Advanced_Materials_Interfaces.jpg?subformat=icon-640$$xicon-640$$yRestricted
000829003 8564_ $$uhttps://juser.fz-juelich.de/record/829003/files/Wagner_et_al-2016-Advanced_Materials_Interfaces.pdf?subformat=pdfa$$xpdfa$$yRestricted
000829003 909CO $$ooai:juser.fz-juelich.de:829003$$pVDB
000829003 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b5$$kFZJ
000829003 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b12$$kFZJ
000829003 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b13$$kFZJ
000829003 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000829003 9141_ $$y2017
000829003 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER INTERFACES : 2015
000829003 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829003 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829003 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829003 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829003 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829003 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829003 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000829003 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000829003 980__ $$ajournal
000829003 980__ $$aVDB
000829003 980__ $$aI:(DE-Juel1)IEK-12-20141217
000829003 980__ $$aUNRESTRICTED
000829003 981__ $$aI:(DE-Juel1)IMD-4-20141217