001     829003
005     20240712113121.0
024 7 _ |a 10.1002/admi.201600096
|2 doi
024 7 _ |a WOS:000383782400005
|2 WOS
024 7 _ |a altmetric:21833425
|2 altmetric
037 _ _ |a FZJ-2017-02820
082 _ _ |a 540
100 1 _ |a Wagner, Ralf
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Counterintuitive Role of Magnesium Salts as Effective Electrolyte Additives for High Voltage Lithium-Ion Batteries
260 _ _ |a Weinheim
|c 2016
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491805925_30232
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Further development of high voltage lithium-ion batteries requires electrolyte formulations stable against oxidation or measures to generate a protective cathode/electrolyte interface (CEI) film. In the frame of this work, the actually counterintuitive concept of using metal ions as electrolyte additives to stabilize the CEI has proven to be successful. The addition of 1 wt% magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2) as electrolyte additive to a conventional LiPF6/organic carbonate electrolyte suppresses the oxidative decomposition of the bulk electrolyte as displayed in improved capacity retention, increased Coulombic efficiencies, and reduced self-discharge of LiNi1/3Mn1/3Co1/3O2 (NMC111)/Li half cells charged to the elevated upper cutoff potential of 4.6 V versus Li/Li+ at 20 °C. Moreover, the addition of Mg(TFSI)2 shows no adverse effect on the cycling performance of graphite anodes, as observed by good long-term cycling results of NMC111/graphite full cells. Ex situ analysis via X-ray photoelectron spectroscopy, scanning electron microscopy, time-of-flight secondary ion mass spectrometry, and electron energy loss spectroscopy of the harvested NMC111 electrodes after cycling indicate that the addition of Mg2+ ions leads to the formation of a CEI layer as a result of an increased hydrolysis reaction of the PF6 – anion.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Streipert, Benjamin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kraft, Vadim
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Reyes Jiménez, Antonia
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Röser, Stephan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kasnatscheew, Johannes
|0 P:(DE-Juel1)171865
|b 5
|u fzj
700 1 _ |a Gallus, Dennis Roman
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Börner, Markus
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Mayer, Christoph
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Arlinghaus, Heinrich Franz
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Korth, Martin
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Amereller, Marius
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Cekic-Laskovic, Isidora
|0 P:(DE-Juel1)171204
|b 12
|u fzj
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 13
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/admi.201600096
|g Vol. 3, no. 15, p. 1600096 -
|0 PERI:(DE-600)2750376-8
|n 15
|p 1600096 -
|t Advanced materials interfaces
|v 3
|y 2016
|x 2196-7350
856 4 _ |u https://juser.fz-juelich.de/record/829003/files/Wagner_et_al-2016-Advanced_Materials_Interfaces.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829003/files/Wagner_et_al-2016-Advanced_Materials_Interfaces.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829003/files/Wagner_et_al-2016-Advanced_Materials_Interfaces.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829003/files/Wagner_et_al-2016-Advanced_Materials_Interfaces.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829003/files/Wagner_et_al-2016-Advanced_Materials_Interfaces.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829003/files/Wagner_et_al-2016-Advanced_Materials_Interfaces.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:829003
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)171865
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)171204
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER INTERFACES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21