000829015 001__ 829015
000829015 005__ 20240712113118.0
000829015 0247_ $$2doi$$a10.1016/j.jelechem.2016.04.023
000829015 0247_ $$2ISSN$$a0022-0728
000829015 0247_ $$2ISSN$$a0368-1874
000829015 0247_ $$2ISSN$$a1572-6657
000829015 0247_ $$2ISSN$$a1873-2569
000829015 0247_ $$2WOS$$aWOS:000377321400007
000829015 037__ $$aFZJ-2017-02832
000829015 082__ $$a540
000829015 1001_ $$0P:(DE-HGF)0$$aHahn, H.$$b0
000829015 245__ $$aIn operando X-shaped cell online electrochemical mass spectrometry (OEMS): New online analysis enables insight into lab scale lithium ion batteries during operation
000829015 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2016
000829015 3367_ $$2DRIVER$$aarticle
000829015 3367_ $$2DataCite$$aOutput Types/Journal article
000829015 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491808679_30238
000829015 3367_ $$2BibTeX$$aARTICLE
000829015 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829015 3367_ $$00$$2EndNote$$aJournal Article
000829015 520__ $$aA new method for the in operando analysis of evolving gases during cyclic aging of lithium ion batteries (LIBs) was developed to better assess safety concerning cell processes, especially those arising from the electrochemical degradation of the lithium hexafluorophosphate LiPF6/organic carbonate solvent based electrolyte. For electrochemical characterization at lab-scale, a cell in the shape of T-connector (“T-cell”) is usually used, offering connections to working, counter and reference electrode. To maintain comparability to this established system, an in operando X-shaped cell, i.e., a T-cell (“X-cell”), which varies only by an additional connector from the original setup, was designed. The new OEMS cell based on DEMS cell designs was linked to a modified GC–MS System and a potentiostat for in operando analysis of the evolving gases and the voltammetry experiments, respectively. This work comprises the evaluation of this new OEMS method in potentiostatic aging experiments of the conventional electrolyte 1M LiPF6 in EC:EMC (1:1, by wt.) in LiNi1/3Co1/3Mn1/3O2 (NCM)/Li half cells as a function of the applied cut-off potential. Mainly CO2 release at onset potentials > 4.6 V vs. Li/Li+ could be identified. At a potential of > 5.4 V vs. Li/Li+, the evolution of silicon tetrafluoride (SiF4) was observed mainly stemming from the HF induced degradation of the used glass fiber separator. Furthermore, triethyl phosphate (TEP) evolved from the LiPF6 decomposition at > 5.5 V vs. Li/Li+. Oxygen evolution either coming from the oxidative decomposition of the electrolyte or degradation of the NCM cathode material was not detected at even 5.5 V vs. Li/Li+ and at 20 °C.
000829015 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000829015 588__ $$aDataset connected to CrossRef
000829015 7001_ $$0P:(DE-HGF)0$$aWagner, Ralf$$b1
000829015 7001_ $$0P:(DE-HGF)0$$aSchappacher, F.$$b2
000829015 7001_ $$0P:(DE-Juel1)166130$$aWinter, M.$$b3$$ufzj
000829015 7001_ $$0P:(DE-HGF)0$$aNowak, S.$$b4$$eCorresponding author
000829015 773__ $$0PERI:(DE-600)1491150-4$$a10.1016/j.jelechem.2016.04.023$$gVol. 772, p. 52 - 57$$p52 - 57$$tJournal of electroanalytical chemistry$$v772$$x1572-6657$$y2016
000829015 8564_ $$uhttps://juser.fz-juelich.de/record/829015/files/1-s2.0-S1572665716301837-main.pdf$$yRestricted
000829015 8564_ $$uhttps://juser.fz-juelich.de/record/829015/files/1-s2.0-S1572665716301837-main.gif?subformat=icon$$xicon$$yRestricted
000829015 8564_ $$uhttps://juser.fz-juelich.de/record/829015/files/1-s2.0-S1572665716301837-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000829015 8564_ $$uhttps://juser.fz-juelich.de/record/829015/files/1-s2.0-S1572665716301837-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000829015 8564_ $$uhttps://juser.fz-juelich.de/record/829015/files/1-s2.0-S1572665716301837-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000829015 8564_ $$uhttps://juser.fz-juelich.de/record/829015/files/1-s2.0-S1572665716301837-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000829015 909CO $$ooai:juser.fz-juelich.de:829015$$pVDB
000829015 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
000829015 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000829015 9141_ $$y2017
000829015 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000829015 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROANAL CHEM : 2015
000829015 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829015 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829015 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829015 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829015 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829015 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829015 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829015 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829015 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829015 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000829015 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000829015 980__ $$ajournal
000829015 980__ $$aVDB
000829015 980__ $$aI:(DE-Juel1)IEK-12-20141217
000829015 980__ $$aUNRESTRICTED
000829015 981__ $$aI:(DE-Juel1)IMD-4-20141217