000829015 001__ 829015 000829015 005__ 20240712113118.0 000829015 0247_ $$2doi$$a10.1016/j.jelechem.2016.04.023 000829015 0247_ $$2ISSN$$a0022-0728 000829015 0247_ $$2ISSN$$a0368-1874 000829015 0247_ $$2ISSN$$a1572-6657 000829015 0247_ $$2ISSN$$a1873-2569 000829015 0247_ $$2WOS$$aWOS:000377321400007 000829015 037__ $$aFZJ-2017-02832 000829015 082__ $$a540 000829015 1001_ $$0P:(DE-HGF)0$$aHahn, H.$$b0 000829015 245__ $$aIn operando X-shaped cell online electrochemical mass spectrometry (OEMS): New online analysis enables insight into lab scale lithium ion batteries during operation 000829015 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2016 000829015 3367_ $$2DRIVER$$aarticle 000829015 3367_ $$2DataCite$$aOutput Types/Journal article 000829015 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491808679_30238 000829015 3367_ $$2BibTeX$$aARTICLE 000829015 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000829015 3367_ $$00$$2EndNote$$aJournal Article 000829015 520__ $$aA new method for the in operando analysis of evolving gases during cyclic aging of lithium ion batteries (LIBs) was developed to better assess safety concerning cell processes, especially those arising from the electrochemical degradation of the lithium hexafluorophosphate LiPF6/organic carbonate solvent based electrolyte. For electrochemical characterization at lab-scale, a cell in the shape of T-connector (“T-cell”) is usually used, offering connections to working, counter and reference electrode. To maintain comparability to this established system, an in operando X-shaped cell, i.e., a T-cell (“X-cell”), which varies only by an additional connector from the original setup, was designed. The new OEMS cell based on DEMS cell designs was linked to a modified GC–MS System and a potentiostat for in operando analysis of the evolving gases and the voltammetry experiments, respectively. This work comprises the evaluation of this new OEMS method in potentiostatic aging experiments of the conventional electrolyte 1M LiPF6 in EC:EMC (1:1, by wt.) in LiNi1/3Co1/3Mn1/3O2 (NCM)/Li half cells as a function of the applied cut-off potential. Mainly CO2 release at onset potentials > 4.6 V vs. Li/Li+ could be identified. At a potential of > 5.4 V vs. Li/Li+, the evolution of silicon tetrafluoride (SiF4) was observed mainly stemming from the HF induced degradation of the used glass fiber separator. Furthermore, triethyl phosphate (TEP) evolved from the LiPF6 decomposition at > 5.5 V vs. Li/Li+. Oxygen evolution either coming from the oxidative decomposition of the electrolyte or degradation of the NCM cathode material was not detected at even 5.5 V vs. Li/Li+ and at 20 °C. 000829015 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000829015 588__ $$aDataset connected to CrossRef 000829015 7001_ $$0P:(DE-HGF)0$$aWagner, Ralf$$b1 000829015 7001_ $$0P:(DE-HGF)0$$aSchappacher, F.$$b2 000829015 7001_ $$0P:(DE-Juel1)166130$$aWinter, M.$$b3$$ufzj 000829015 7001_ $$0P:(DE-HGF)0$$aNowak, S.$$b4$$eCorresponding author 000829015 773__ $$0PERI:(DE-600)1491150-4$$a10.1016/j.jelechem.2016.04.023$$gVol. 772, p. 52 - 57$$p52 - 57$$tJournal of electroanalytical chemistry$$v772$$x1572-6657$$y2016 000829015 8564_ $$uhttps://juser.fz-juelich.de/record/829015/files/1-s2.0-S1572665716301837-main.pdf$$yRestricted 000829015 8564_ $$uhttps://juser.fz-juelich.de/record/829015/files/1-s2.0-S1572665716301837-main.gif?subformat=icon$$xicon$$yRestricted 000829015 8564_ $$uhttps://juser.fz-juelich.de/record/829015/files/1-s2.0-S1572665716301837-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000829015 8564_ $$uhttps://juser.fz-juelich.de/record/829015/files/1-s2.0-S1572665716301837-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000829015 8564_ $$uhttps://juser.fz-juelich.de/record/829015/files/1-s2.0-S1572665716301837-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000829015 8564_ $$uhttps://juser.fz-juelich.de/record/829015/files/1-s2.0-S1572665716301837-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000829015 909CO $$ooai:juser.fz-juelich.de:829015$$pVDB 000829015 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ 000829015 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000829015 9141_ $$y2017 000829015 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000829015 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROANAL CHEM : 2015 000829015 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000829015 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000829015 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000829015 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000829015 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000829015 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000829015 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000829015 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000829015 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000829015 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000829015 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 000829015 980__ $$ajournal 000829015 980__ $$aVDB 000829015 980__ $$aI:(DE-Juel1)IEK-12-20141217 000829015 980__ $$aUNRESTRICTED 000829015 981__ $$aI:(DE-Juel1)IMD-4-20141217