001     829124
005     20210129230232.0
024 7 _ |a 10.1016/j.cortex.2017.02.008
|2 doi
024 7 _ |a 0010-9452
|2 ISSN
024 7 _ |a 1973-8102
|2 ISSN
024 7 _ |a WOS:000403029900011
|2 WOS
024 7 _ |a altmetric:16979337
|2 altmetric
024 7 _ |a pmid:28391066
|2 pmid
037 _ _ |a FZJ-2017-02931
082 _ _ |a 570
100 1 _ |a Binder, Ellen
|0 P:(DE-Juel1)131716
|b 0
|e Corresponding author
245 _ _ |a Lesion evidence for a human mirror neuron system
260 _ _ |a Paris
|c 2017
|b Elsevier Masson
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491805578_30235
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a More than two decades ago, the mirror neuron system (MNS) was discovered in non-human primates: Single-cell recordings detected visuo-motor neurons that discharged not only when the monkey performed an action, but also when it observed conspecifics performing the same action. It has been proposed that a fronto-parietal circuitry constitutes the human homolog of the MNS. However, the functional role of a human MNS (i.e., whether it is functionally necessary for imitation or action understanding) to date remains controversial. We here examined how patients with left hemisphere (LH) stroke imitate, recognize, and comprehend intransitive meaningful limb actions. In particular, we investigated whether apraxic patients with lesions affecting key nodes of the putative human MNS show deficits in action imitation, action recognition, and action comprehension to a similar degree – as predicted by the MNS hypothesis. Behavioral results showed that patients with apraxia (n = 18) indeed performed significantly worse in all three motor cognitive tasks compared to non-apraxic patients (n = 26) and healthy controls (n = 19), whose performance did not differ significantly. Lesions of the apraxic (compared to non-apraxic) patients with LH stroke affected more frequently key regions of the putative human MNS, i.e., the left inferior frontal, superior temporal, and supramarginal gyri as well as the inferior parietal lobe (p < .01, false discovery rate – FDR-corrected). Albeit largely overlapping, voxel-based lesion-symptom mapping (VLSM) revealed that deficits in gesture comprehension were mainly associated with lesions of more anterior parts of the MNS, whereas lesions located more posteriorly mainly resulted in gesture imitation deficits (p < .05, FDR-corrected). Our clinical data support key hypotheses derived from the notion of a human MNS: LH lesions to the MNS core regions affected – critically and to a similar extent – the imitation, recognition, and comprehension of meaningful actions.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dovern, Anna
|0 P:(DE-Juel1)131718
|b 1
700 1 _ |a Hesse, Maike
|0 P:(DE-Juel1)131726
|b 2
700 1 _ |a Ebke, Markus
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Karbe, Hans
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Saliger, Jochen
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 6
700 1 _ |a Weiss-Blankenhorn, Peter
|0 P:(DE-Juel1)131748
|b 7
773 _ _ |a 10.1016/j.cortex.2017.02.008
|g Vol. 90, p. 125 - 137
|0 PERI:(DE-600)2080335-7
|p 125 - 137
|t Cortex
|v 90
|y 2017
|x 0010-9452
856 4 _ |u https://juser.fz-juelich.de/record/829124/files/1-s2.0-S0010945217300588-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829124/files/1-s2.0-S0010945217300588-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829124/files/1-s2.0-S0010945217300588-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829124/files/1-s2.0-S0010945217300588-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829124/files/1-s2.0-S0010945217300588-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829124/files/1-s2.0-S0010945217300588-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:829124
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131716
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131718
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131726
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131748
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CORTEX : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21