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We present a diffusion dominated evaporation model using the popular pseudopotential multicompo-
nent lattice Boltzmann method introduced by Shan and Chen. With an analytical computation of the
diffusion coefficients, we demonstrate that Fick’s law is obeyed. We then validate the applicability
of our model by demonstrating the agreement of the time evolution of the interface position of an
evaporating planar film to the analytical prediction. Furthermore, we study the evaporation of a freely
floating droplet and confirm that the effect of Laplace pressure is significant for predicting the time
evolution of small droplet radii. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4975024]

I. INTRODUCTION

Evaporating fluids are ubiquitous in our daily life and in
industrial processes, such as ink jet printing,1 coating,2 and
particle deposition.3 In particular for suspensions or polymer
solutions, as well as fluids in confined geometries, the evap-
oration of individual components can induce fluid flows or a
change of relative concentrations leading to changing rheolog-
ical and transport properties of the constituents. For example,
the evaporation of a sessile colloidal droplet on a substrate
leads to a capillary flow transporting the colloidal particles
to the edge of a droplet, which finally results in a ring-like
deposit.4 The ring-like stains can be a useful tool to deposit par-
ticles and can also be disadvantageous when a uniform pattern
is desirable. Another example is the evaporation of droplets on
rough or chemically patterned substrates. Surrounding geome-
tries and the wettability of a substrate have a large influence
on the lifetime of evaporating droplets.5 A thorough under-
standing of this impact of evaporation on the fluid behavior
is mandatory to consequently optimize industrial applications
and to improve our fundamental understanding of effects like
film formation, droplet drying, or droplet spreading.

There are numerous theoretical6–8 and experimental4,9

studies of fluid evaporation. While most theoretical studies are
limited to the macroscopic scale, experiments suffer from diffi-
culties that arise by tuning the individual microscale properties
of fluids. The thorough understanding of fluid evaporation
calls for mesoscopic or microscopic details and the flexi-
bility to tune the properties of individual fluid constituents
independently. This is possible by means of computer sim-
ulations. Computer simulations allow access to parameters
which are not easily controllable in experiments and to tune the
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properties of individual fluid constituents independently. They
can thus help to improve our understanding of evaporation
driven fluid transport. Simulations of evaporating fluids often
utilize molecular dynamics (MD).10–13 While MD offers a very
high flexibility in the microscopic details, its computational
cost is very high. Therefore, MD simulations are limited to
very small length and time scales on the nanometre or nanosec-
ond scale.13 In order to reach experimentally relevant scales,
a continuum approach is more productive and our method of
choice is the lattice Boltzmann method (LBM).14–16 The LBM
has gained popularity for the simulation of fluid flows due to
its straightforward implementation and parallelization. Soon
after its invention, the LBM was extended to simulate multiple
interacting fluid phases and components and today a plethora
of multiphase and multicomponent methods exists.17–21,27

The mesoscale nature of the method combined with the
possibility to add additional fields, external forces, suspended
objects, thermal noise, or complex boundary conditions in
a very straightforward manner has made the LBM particu-
larly popular for applications in microfluidics and soft matter
physics. Many of the physical systems studied in these fields
include volatile liquids, where the effect of evaporation plays
a dominant role. Therefore, it is not surprising that a num-
ber of groups have simulated evaporating fluids using the
LBM recently. Ledesma-Aguilar et al.22,23 present a diffusion
based evaporation method based on the free energy multi-
phase lattice Boltzmann method and demonstrate quantitative
agreement with several benchmark cases as well as qualitative
agreement with the experimental data of evaporating droplet
arrays. Jansen et al.24 study the evaporation of droplets on
a chemically patterned substrate and qualitatively compare
the simulation results with experimental data. Their method
is based on a continuous removal of mass from the droplet
and thus does not allow studying transport processes in the
vapor phase. Yan et al.25 present a thermal model to study the
contact line dynamics during droplet evaporation where the
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liquid-vapor phase change is driven by a temperature field
and a well defined equation of state. Joshi and Sun26 present
simulations of drying colloidal suspensions by means of a
modified pseudopotential multiphase model following Shan
and Chen. They assign a fixed mass flux to the system bound-
ary which causes a reduction in vapor concentration and thus
triggers a liquid-vapor phase change at the interface. However,
their results are purely qualitative and a thorough analytical
understanding of the diffusion in the system is missing.

In this paper, we overcome this limitation and introduce an
alternative evaporation model for the pseudopotential method
of Shan and Chen. We focus on the two-component version
of the method,27 but the application to an arbitrary number
of components and the multiphase pseudopotential method is
straightforward. Generally, the pseudopotential LBM is very
popular due to its ease of implementation and flexibility when
combined, for example, with complex geometries,17,28 locally
varying contact angles,29 or suspended particles.30 To trig-
ger evaporation, we do not impose a mass flux but instead
fix the density of one component at selected boundary sites
which induces a density gradient. The evaporation process is
diffusion dominated and can be well described using Fick’s
law with well defined diffusivities. We validate the applica-
bility of our model by comparing the time dependent sim-
ulation results of an evaporating planar film and a freely
floating evaporating droplet with their respective analytical
predictions.

This remainder of this paper is organised as follows. Sec. II
introduces the lattice Boltzmann method and our extension
for evaporating fluids. Our results are shown in Sec. III, and
Sec. IV concludes the article.

II. SIMULATION METHOD
A. The lattice Boltzmann method

The lattice Boltzmann equation can be obtained from spa-
tially and temporally discretizing the Boltzmann equation.
Multiple fluid components c are modeled by following the
evolution of the single particle distribution function

f c
i (x + ei∆t, t + ∆t) − f c

i (x, t) = −
∆t
τc [ f c

i (x, t)

− f eq
i (ρc(x, t), uc

eq(x, t))].

(1)

The single particle distribution functions f c
i (x, t) at positions x

alternatively stream, as described by the LHS of (1), along the
i= 1, . . . , 19 discretized directions ei and collide, as described
by the RHS of (1) at every time step t. Throughout this
work, we utilize 2 components c and c. The collision is
achieved by relaxing the probability distribution functions
towards a discretized second-order equilibrium distribution
function

f eq
i (ρc, uc

eq) = ωi ρ
c

[
1 +

ci · uc
eq

c2
s
−

(
uc

eq · u
c
eq

)
2c2

s
+

(
ci · uc

eq

)2

2c4
s

]
,

(2)

where cs =
1√
3
∆x
∆t is the speed of sound and ωi is a weight

factor defined as ω0 =
1
3 , ω1,...,6 =

1
18 , and ω7,...,18 =

1
36 . The

densities are defined as ρc(x, t)= ρ0
∑

i f c
i (x, t), where ρ0

is a reference density, and the velocities are defined as
uc(x, t)=

∑
i f c

i (x, t)ci/ρ
c(x, t), while the velocity in the equi-

librium distribution function is uc
eq =

∑
c ρ

cuc/
∑

c ρ
c.

For brevity and numerical efficiency, we choose the lattice
constant ∆x, the time step ∆t, the unit mass ρ0, and the relax-
ation time τc to be unity, which leads to a kinematic viscosity
νc = 2τ−1

6 = 1
6 in lattice units.

The system boundaries are treated as periodic boundaries
by default. To do so, fluid leaving one system boundary reen-
ters the opposite side and forces are computed across these
periodic boundaries. To inhibit flow, walls can be constructed
by inverting velocities at selected boundary sites.14

B. The pseudopotential multicomponent lattice
Boltzmann method

For the fluid components introduced above to become
immiscible, Shan and Chen introduced a pseudopotential
interaction force

Fc(x, t) = −Ψc(x, t)
∑

c̄

∑
i

ωig
cc̄
Ψ

c̄(x + ei, t)ei (3)

to achieve the separation of the components.27 This force is
defined as a nearest neighbor interaction between fluid compo-
nents c and c̄27 and scaled through the choice of the parameter
gcc̄. Here Ψc(x, t) is an effective mass, defined as

Ψ
c(x, t) ≡ Ψ(ρc(x, t)) = 1 − e−ρ

c(x,t)/ρ0 . (4)

The force is applied to the fluid by adding a shift of ∆uc(x, t)
=

τcFc(x,t)
ρc(x,t) to uc

eq(x, t) during collision. This causes the separa-
tion of fluids and the formation of a diffuse interface between
them. The width of the interface separating the regions is typi-
cally about 5∆x,31 with a small dependence on the interaction
strength.

C. The evaporation model

When the interaction parameter gcc̄ in the pseudopotential
model is properly chosen,28 a separation of components takes
place. Each component will separate into a denser majority
phase of density ρma and a lighter minority phase of density
ρmi, respectively.

In order to drive the system out of equilibrium, we impose
the density of component c at the boundary sites xH to be
of constant value ρc(xH , t) = ρc

H by setting the distribution
function of component c to

f c
i (xH , t) = f eq

i

(
ρc

H , uc
H (xH , t)

)
, (5)

in which uc
H (xH , t) = 0. Setting the velocity to zero at the sys-

tem boundary is in agreement with the idea of an undisturbed
large volume outside the system, which does not cause pertur-
bations in the system. Depending on the ratio of the minority
density ρc

mi and ρc
H , this induces evaporation or condensation.

Furthermore, for simplicity, we ensure the total mass conser-
vation within the system by setting the density of component
c̄ as

ρc̄(xH , t) = ρc(xH , t − 1) + ρc̄(xH , t − 1) − ρc
H (6)
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and again ensure an undisturbed flow field by setting
uc̄

H (xH , t) = 0, so that the distribution functions of component
c̄ at the evaporation boundary sites xH become

f c̄
i (xH , t) = f eq

i

(
ρc̄

H , uc̄
H (xH , t)

)
. (7)

We note that our model can be easily extended to situa-
tions where mass is not conserved. We ensure the equiva-
lence to the open system by mimicking a zero density gra-
dient within the infinite volume outside the system. This
way, forces from the pseudopotential interactions only have
an impact on the bulk of the simulation volume and not at
the boundary. This can be achieved either by using evap-
oration boundaries on periodic sites as well or by using
a second layer of evaporation boundary sites. Thereby we
enforce the same density and a zero gradient at the system
boundary.

In the case where the set density ρc
H is not equal to the

equilibrium minority density ρc
mi, a density gradient in the

vapor phase of component c is formed. This gradient causes
component c to diffuse towards the minimum.

III. RESULTS AND DISCUSSIONS
A. Diffusion

In binary fluid mixtures, following Fick’s first law, we can
write the mass flux of component c as

jc = −Dcc∇ρc − Dcc̄∇ρc̄, (8)

where Dcc and Dcc̄ are the diffusion coefficients. In the Shan-
Chen multicomponent method, the mass flux of component c
can be written as32

jc = ρc(Uc − U), (9)

where Uc and U are macroscopic velocities of component c
and the binary mixture, respectively. The macroscopic veloc-
ities are defined as an average of the total momentum before
and after each collision33 as

U =
ρcuc + ρc̄uc̄ + 1

2 (Fc + Fc̄)

ρc + ρc̄ , (10)

Uc =
1

2ρc

[
ρcuc + Fc +

ρc(ρcuc + ρc̄uc̄)
ρc + ρc̄

]
. (11)

By performing a Chapman-Enskog expansion,33 Eq. (9) can
be rewritten to be identical to Eq. (8), with the diffusion
coefficients given as32

Dcc = c2
s

(
τ −

1
2

)
ρc̄

ρc + ρc̄ −
c2

s ρ
cΨc̄gc̄cΨ

′c

ρc + ρc̄ ,

Dcc̄ = −c2
s

(
τ −

1
2

)
ρc

ρc + ρc̄ +
c2

s ρ
c̄Ψcgcc̄Ψ

′c̄

ρc + ρc̄ ,

(12)

with Ψ
′c being the spatial derivative of Ψc. We note that the

diffusion is dependent on the symmetric interaction strengths
gcc̄ and gc̄c, as well as the densities of the two components ρc

and ρc̄.
In the limit of small gradients, we can assume that

∇ρc̄(x, t) = −∇ρc(x, t), with which Eq. (8) becomes

jc = −Dc∇ρc, (13)

where

Dc =

[
c2

s (τ −
1
2

) −
c2

s

ρc + ρc̄ (ρc̄
Ψ

cgcc̄
Ψ
′c̄ + ρc

Ψ
c̄gc̄c
Ψ
′c)

]
.

(14)

To validate the theoretical analysis above, we investigate
the diffusion of a component c into a system filled with another
component c̄. We perform a simulation with a system size of
125×4×4 and fill the system with fluid c̄ of density ρc̄ = 0.7.
A wall of thickness h = 2 is placed at x = 125, and the fluid
interaction parameter is set to gcc̄ = gc̄c = 3.6. We utilize an
evaporation boundary at x = 0 and set the density ρc

H = 0.001
to ensure a diffusive flow that is undisturbed by convection.
Then component c diffuses into the system. Meanwhile, we
numerically solve Fick’s second law

∂ρc

∂t
= −Dcc

∆ρc − Dcc̄
∆ρc̄

∂ρc̄

∂t
= −Dc̄c̄

∆ρc̄ − Dc̄c
∆ρc

(15)

to describe the space and time dependent density profile of
component c. In Fig. 1, we compare the lattice Boltzmann
simulation results (symbols) with the numerical solution of
Eq. (15) (solid lines). From the evaporation boundary with
density ρc

H , fluid diffuses into the system. Being a diffu-
sion process, the rate at which the fluid invades the system
is dependent on the density gradient. The gradient subse-
quently decreases and fluid distributes itself further into the
system, aiming to remove the gradient. There is a good agree-
ment between simulation results and the numerical solution,
as shown in Fig. 1.

We note that the diffusion equation does not hold at fluid-
fluid interfaces.32 However, the movement of the interface
during evaporation is governed by the diffusion of the fluids
surrounding it, which we demonstrate as follows.

FIG. 1. Time evolution of density profiles of component c. The system is
initially empty of c. Diffusion allows fluid from an infinite reservoir at x = 0 to
build up gradually changing density profiles in agreement with the analytical
solution.
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FIG. 2. Schematic representation of the planar film (front view). We fill the
lower half of the system with fluid c and the upper half with fluid c such
that a fluid-fluid interface forms at xI . The interface thickness is 2d0. To
drive the evaporation, we impose the boundary condition ρc(x = xH )= ρc

H at
the top of the system. A solid surface with thickness h = 2 is located at the
bottom.

B. Evaporation of a planar film

We investigate the evaporation of a planar film sitting on
a solid substrate, as illustrated in Fig. 2. To do so, we per-
form simulations with a system size of 128× 4× 4. We fill
one half of the system with fluid c and the other half with
fluid c̄ of equal density (ρc

ma = ρ
c̄
ma = 0.70, ρc

mi = ρ
c̄
mi = 0.04)

such that a fluid-fluid interface forms at x0 = 64. We
define the position of the interface xI as the position of
ρc − ρc̄ = 0. The interaction strength in Eq. (3) is chosen to
be gcc̄ = gc̄c = 3.6. We place a wall of thickness 2 with simple
bounce back boundary conditions at the bottom, parallel to
the interface, while the boundaries normal to the substrate are
periodic.

After equilibration, the density of fluid c is constant in
both the denser phase (ρc

ma ≈ 0.704) and the lighter phase
(ρc

mi ≈ 0.036), whereas between them a diffuse interface of
about 2d0 = 5 lattice units is formed, as shown in the density
profile along the x direction in Fig. 3 (solid line). We then apply

FIG. 3. Density profile of fluid c along the x direction after equilibration
(defined as t = 0, solid line) and density profiles at t = 106 time steps later
with boundary densities ρc

H = 0.03 (dashed line) and ρc
H = 0.02 (dotted

line). The magnification depicts of the subtle difference of ρc
H causing

a different density gradient and a different time behavior of the moving
interface.

the evaporation boundary condition by setting the density at
the top boundary ρc(x = 128) to ρc

H . In Fig. 3, we show the
density profiles along the x direction just after equilibration
(solid line) and for evaporation boundary densities ρc

H = 0.03
(dashed line) and ρc

H = 0.02 (dotted line) after 106 subsequent
simulation time steps. A density gradient of fluid c is formed in
the lighter phase, resulting in the diffusion of fluid c towards the
evaporation boundary. Thus, the interface position decreases
with time. It decreases faster for a lower evaporation boundary
density ρc

H , which indicates that the mass flux increases with
decreasing the evaporation boundary density.

If we assume that the fluid densities in the minority phases
vary linearly, Eq. (13) becomes

jc = −
(
Dc(ρmi − ρ

c
H )/(xH − xI − d0)

)
n, (16)

where n is the normal vector of the interface. The mass flux is
approximately proportional to the density difference between
the minority density and the evaporation boundary density
ρmi − ρc

H , which allows to control the evaporation rate by
varying ρc

H .
With the assumption that the density profile across the

interface is also linear, the total mass of fluid c in the system
is

Mc(t) = A
[
(xI − d0)ρc

ma + (xH − xI − d0)

× (ρc
mi + ρ

c
H )/2 + d0(ρc

ma − ρ
c
mi)

]
, (17)

where A is the area of the cross section. From Eq. (17), we can
obtain

dMc/dt = A(ρc
ma − ρ

c
mi/2 − ρ

c
H/2)

dxI

dt
. (18)

Based on the principle of mass conservation, the time evolution
of mass obeys

Mc(t) = Mc(0) − A
∫ t

0
jc · ndt, (19)

where Mc(0) is the initial mass of fluid c. From Eq. (19), we
can also get the time derivative of the total mass as

dMc/dt = A|jc |. (20)

FIG. 4. Interface position as a function of time for different evaporation
boundary densities ρc

H = 0.035, ρc
H = 0.03, and ρc

H = 0.02. The theoretical
prediction, Eq. (22) (solid lines), agrees well with the simulation data
(symbols).
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FIG. 5. Schematic cross-sectional representation of a droplet of radius RI
surrounded by another fluid up to the spherical system boundary RH , where
the evaporation boundary condition is imposed.

By comparing Eqs. (18) and (20), we obtain

dxI

dt
=

D(ρc
mi − ρ

c
H )

(xH − xI − d0)(ρc
ma − ρ

c
mi/2 − ρ

c
H/2)

. (21)

We solve Eq. (21) with the initial condition xI (t = 0) = x0 and
finally obtain the interface position as a function of time

xI (t) = xH + d0 −

[
(xH + d0 − x0)2

+ 2
D(ρc

mi − ρ
c
H )

ρc
ma − ρ

c
mi/2 − ρ

c
H/2

t

]1/2

. (22)

The simulation results of the time evolution of the
interface position for different evaporation boundary densi-
ties ρc

H = 0.035, ρc
H = 0.03, and ρc

H = 0.02 along with our
theoretical analysis, Eq. (22), are presented in Fig. 4. We

find excellent quantitative agreement between the theory and
simulation.

C. Evaporation of a freely suspended droplet

In this section, we investigate the evaporation of a freely
floating droplet. A droplet of component c with a radius of RI

is the center of a spherical system of size RH and surrounded
by component c̄, as shown in Fig. 5. A spherical evapora-
tion boundary is applied at RH . Under the assumption of
quasi-static dynamics, the density profile of component c in
the lighter phase satisfies the Laplace equation,

∆ρc(r) = 0, (23)

where the boundary conditions are

ρc(r)|r=RI+d0 = ρ
c
mi (24)

and
ρc(r)|r=RH = ρ

c
H . (25)

In spherical coordinates, we obtain the analytical solution
as

ρc(r) = ρc
H − (ρc

H − ρ
c
mi)

RH − r
RH − RI − d0

RI + d0

r
, (26)

where r is the distance from the center of a spherical coordinate
system, originating at the droplet center. Inserting Eq. (26) into
Eq. (13), we obtain the mass flux as

jc(r) = −Dc(ρmi − ρ
c
H )

RH (RI + d0)

(RH − RI − d0)r2
nr , (27)

where nr is the normal vector to the droplet interface. Assum-
ing the density profile across the interface also satisfies
Laplace’s equation, we obtain the total mass of fluid c in the
system as

Mc =

∫ RI−d0

0
4πr2ρc

madr +
∫ RI+d0

RI−d0

4πr2
(
ρc

mi − (ρc
mi − ρ

c
ma)

RI + d0 − r
2d0

RI − d0

r

)
dr

+

∫ RH

RI+d0

4πr2
(
ρH − (ρH − ρ

c
mi)

RH − r
RH − RI − d0

RI + d0

r

)
dr. (28)

We simplify Eq. (28) and derive the time derivative of the total
mass as

dMc/dt =
2π
3

(
R2

H

(
−ρH + ρ

c
mi

)
+ RH

(
−2RI ρ

c
H + 2RI ρ

c
mi − 2d0ρ

c
H + 2d0ρ

c
mi

)
+ 6R2

I ρ
c
ma − 6R2

I ρ
c
mi − 2d2

0 ρ
c
ma + 2d2

0 ρ
c
mi

)
dRI/dt.

(29)

Based on the principle of mass conservation, we have

Mc(t) = Mc(0) −
∫ t

0
4πr2jc · nrdt, (30)

where Mc(0) is the total initial mass of fluid c in the sys-
tem. From Eq. (30) with using Eq. (27), we also get the time

derivative of the total mass as

dMc/dt = 4πDc(ρmi − ρ
c
H )

(RI + d0)RH

(RH − RI − d0)
. (31)

By comparing Eqs. (29) and (31), we obtain the time
evolution of the droplet radius as

dRI/dt = 4πDc(ρmi − ρ
c
H )(RI + d0)RH

×

[
(RH − RI − d0)

2π
3

(
R2

H

(
−ρH + ρ

c
mi

)
+RH

(
−2RI ρ

c
H + 2RI ρ

c
mi − 2d0ρ

c
H + 2d0ρ

c
mi

)
+ 6R2

I ρ
c
ma − 6R2

I ρ
c
mi − 2d2

0 ρ
c
ma + 2d2

0 ρ
c
mi

)]−1
. (32)
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FIG. 6. Time evolution of the droplet radius for evaporation boundary densi-
ties ρc

H = 0.03, ρc
H = 0.025, and ρc

H = 0.02. Our theoretical analysis without
surface tension, Eq. (32) (dashed lines), agrees quantitatively with the simula-
tion data (symbols) for large droplet radii and deviates for small droplet radii.
Our theoretical analysis which includes the surface tension, Eq. (40) (solid
lines), agrees quantitatively well with the simulation data for both large and
small droplet radii.

We solve Eq. (32) numerically with a 4th-order Runge-Kutta
algorithm. For the simulations, we initialize a droplet with
a radius of R0 = 65 and densities ρc

ma = ρc̄
ma = 0.70 and

ρc
mi = ρc̄

mi = 0.04, in a computational domain of 2563. The
densities of fluid c equilibrate to ρc

ma ≈ 0.712 inside the droplet
and ρc

mi ≈ 0.037 outside. We initiate the evaporation by set-
ting the density at the spherical evaporation boundary r =
RH to ρc

H = 0.03, ρc
H = 0.025, and ρc

H = 0.02. In Fig. 6,
we compare the analytical solution, Eq. (32) (dashed lines),
with the simulation results (symbols). We note that Shan-
Chen models are exposed to spurious vaporisation effects
once the droplets become small, i.e., when the diameter is
around 5-10 lattice units. To avoid the effect of the spuri-
ous vaporisation on the analysis, we only use the simulation
data when the diameter of the droplet is larger than 20. The
analytical solution captures the qualitative features of the
time evolution of the droplet radius well and quantitatively
agrees with the simulation data for the droplet at a larger

radius. However, it deviates for small droplet radii. This can
be explained by the fact that we neglected the effect of sur-
face tension on the droplet evaporation. The surface tension
induces a Laplace pressure, which is larger when the droplet
radius becomes small.6 We can take into account this effect as
follows.

For a spherical droplet, the Young-Laplace equation can
be written as

P(r > RI , t) = P(r < RI , t) −
2γ
RI

, (33)

where γ is the surface tension, and P(r > RI , t) and P(r < RI , t)
are the pressures outside and inside the droplet at time t,
respectively. We can write the pressure inside the droplet as27

P(r < RI , t) = c2
s (ρc

ma + ρ
c̄
mi) +

c2
s

2
gcc̄Ψ(ρc

ma)Ψ(ρc̄
mi). (34)

For simplification, in the case of ρc̄
mi � ρc

ma, we can write the
pressure in terms of the leading term as

P(r < RI , t) = c2
s ρ

c
ma. (35)

The pressure outside the droplet can be treated as constant
during evaporation, so that we get

P(r > RI , t) = P(r < RI , t = 0) −
2γ
R0
= P(r < RI , t) −

2γ
RI

.

(36)

By inserting Eq. (35) into Eq. (36), we obtain the majority
density of fluid c inside the droplet as

ρc
ma(t) = ρc

ma(t = 0) −
2γ

c2
s

(
1

R0
−

1
RI

)
. (37)

The minority density of fluid c outside the droplet can be
treated as proportional to the majority density of fluid c inside
the droplet.6 Thus, we obtain

ρc
mi(t) = ρ

c
mi(t = 0)

ρc
ma(t = 0) − 2γ

c2
s

( 1
R0
− 1

RI
)

ρc
ma(t = 0)

. (38)

For brevity, we denote ρc
ma(t = 0) as ρc

ma,0 and ρc
mi(t = 0)

as ρc
mi,0. We insert Eqs. (37) and (38) into Eq. (28), and after

some manipulations, we finally obtain the time derivative of
the droplet mass as

dMc/dt =
2π
3

(
(−R2

H − 2RI RH − 2RHd0)ρc
H

+ (R2
H + 2RI RH + 2RHd0 − 6R2

I + 2d2) *.
,
ρc

mi,0

ρc
ma,0 −

2γ
c2

s
( 1

R0
− 1

RI
)

ρc
ma,0

+/
-

+ (RI R
2
H + dR2

H + R2
I RH + 2RI RHd0 + d2

0 RH − 2R3
I + 2RI d

2) *
,

−2γρc
mi,0

c2
s ρ

c
ma,0

1

R2
I

+
-

+ (6R2
I − 2d2)(ρc

ma,0 −
2γ

c2
s

(
1

R0
−

1
RI

)) + (2R3
I − 2RI d

2)(
−2γ

c2
s R2

I

)
)
dRI/dt. (39)

We compare Eq. (39) with Eq. (31) and get the equation for dRI /dt including the effect of surface tension as
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dRI/dt = 4πDc(ρmi − ρ
c
H )(RI + d0)RH

[
(RH − RI − d0)

2π
3

(
(−R2

H − 2RI RH − 2RHd0)ρc
H

+ (R2
H + 2RI RH + 2RHd0 − 6R2

I + 2d2) *.
,
ρc

mi,0

ρc
ma,0 −

2γ
c2

s
( 1

R0
− 1

RI
)

ρc
ma,0

+/
-

+ (RI R
2
H + dR2

H + R2
I RH + 2RI RHd0 + d2

0 RH − 2R3
I + 2RI d

2) *
,

−2γρc
mi,0

c2
s ρ

c
ma,0

1

R2
I

+
-

+ (6R2
I − 2d2)(ρc

ma,0 −
2γ

c2
s

(
1

R0
−

1
RI

)) + (2R3
I − 2RI d

2)(
−2γ

c2
s R2

I

)
)]−1

. (40)

We solve Eq. (40) numerically and compare the theoretical
prediction with simulation data in Fig. 6. The theoretical anal-
ysis including the effect of surface tension (solid lines) agrees
quantitatively well with the simulation data (symbols) for both
large and small droplet radii. Thus, we confirm that the effect of
surface tension becomes significant when the droplets become
small and must not be neglected. This result is of particular
importance for lattice Boltzmann simulations of evaporating
droplets since the typical number of lattice nodes available
to resolve the radius of a single droplet is often limited. This
holds in particular for systems involving a large number of
droplets.

IV. CONCLUSION

We presented a diffusion dominated evaporation model
using the popular pseudopotential multicomponent lattice
Boltzmann method introduced by Shan and Chen. The evap-
oration is induced by imposing the density of one component
at the system boundary while ensuring total mass conserva-
tion, which causes diffusion of components driven by a density
gradient. The diffusion coefficients depend on the densities of
the fluids as well as the interaction strength parameters of the
Shan-Chen model. With the analytically determined diffusion
coefficients, we confirm that the diffusion obeys Fick’s law.

We derived a theoretical model for the time evolution of
the interface position of an evaporating planar film under the
quasi-static assumption. Our theoretical model predicts that
the evaporation flux is proportional to the density difference
between the minority density and the evaporation boundary
density ρmi − ρc

H , while the time evolution of the interface
position obeys the expected t0.5 law. We then carried out sim-
ulations which are in good quantitative agreement with our
analytical model.

Furthermore, we derived analytical models describing
the evaporation of a floating droplet surrounded by another
fluid, as an extension of the famous Epstein-Plesset theory.6

While the original publication assumes an infinite system, we
extended the model towards a finite system size. We demon-
strate a good agreement between the theory and simulation if
one takes into account the effect of surface tension causing a
high Laplace pressure and an increased evaporation rate in the
case of small droplet radii.

As an outlook, we note that our method is not only suit-
able to simulate evaporating fluids, but that it is straightforward

to apply it to investigate the condensation of droplets. There-
fore, our method can be a powerful tool for exploring both
evaporation and condensation processes in complex fluidic
systems.
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nologies B.V. and NWO/STW (STW Project No. 13291) as
well as the allocation of computing time at the High Perfor-
mance Computing Center Stuttgart and the Jülich Supercom-
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