000829281 001__ 829281
000829281 005__ 20240712113011.0
000829281 0247_ $$2doi$$a10.1007/s10562-016-1711-z
000829281 0247_ $$2ISSN$$a1011-372X
000829281 0247_ $$2ISSN$$a1572-879X
000829281 0247_ $$2WOS$$aWOS:000372267200015
000829281 037__ $$aFZJ-2017-03011
000829281 041__ $$aEnglish
000829281 082__ $$a540
000829281 1001_ $$0P:(DE-HGF)0$$aAmende, M.$$b0
000829281 245__ $$aDicyclohexylmethane as a Liquid Organic Hydrogen Carrier: A Model Study on the Dehydrogenation Mechanism over Pd(111)
000829281 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2016
000829281 3367_ $$2DRIVER$$aarticle
000829281 3367_ $$2DataCite$$aOutput Types/Journal article
000829281 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1495006644_22014
000829281 3367_ $$2BibTeX$$aARTICLE
000829281 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829281 3367_ $$00$$2EndNote$$aJournal Article
000829281 520__ $$aWe have studied the dehydrogenation of the liquid organic hydrogen carrier (LOHC) dicyclohexylmethane (DCHM) to diphenylmethane (DPM) and its side reactions on a Pd(111) single crystal surface. The adsorption and thermal evolution of both DPM and DCHM was measured in situ in ultrahigh vacuum (UHV) using synchrotron radiation-based high-resolution X-ray photoelectron spectroscopy (HR-XPS). We found that after deposition at 170 K, the hydrogen-lean DPM undergoes C-H bond scission at the methylene bridge at 200 K and, starting at 360 K, complete dehydrogenation of the phenyl rings occurs. Above 600 K, atomic carbon incorporates into the Pd bulk. For the hydrogen-rich DCHM, the first stable dehydrogenation intermediate, a double π-allylic species, forms already at 190 K. Until 340 K, further dehydrogenation of the phenyl rings and of the methylene bridge occurs, yielding the same intermediate that is formed upon heating of DPM to this temperature, that is, DPM dehydrogenated at the methylene bridge. The onset for the complete dehydrogenation of this intermediate occurs at a much higher temperature than after adsorption of DPM. This behavior is mainly attributed to coadsorbed hydrogen from DCHM dehydrogenation. The results are discussed in comparison to our previous study of DPM and DCHM on Pt(111) revealing strong material dependencies.
000829281 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000829281 588__ $$aDataset connected to CrossRef
000829281 7001_ $$0P:(DE-HGF)0$$aGleichweit, C.$$b1
000829281 7001_ $$0P:(DE-HGF)0$$aXu, T.$$b2
000829281 7001_ $$0P:(DE-HGF)0$$aHöfert, O.$$b3
000829281 7001_ $$0P:(DE-Juel1)162305$$aWasserscheid, P.$$b4
000829281 7001_ $$0P:(DE-HGF)0$$aSteinrück, H.-P.$$b5
000829281 7001_ $$0P:(DE-HGF)0$$aPapp, Christian$$b6$$eCorresponding author
000829281 7001_ $$0P:(DE-HGF)0$$aLibuda, Jörg$$b7
000829281 7001_ $$0P:(DE-HGF)0$$aKoch, M.$$b8
000829281 773__ $$0PERI:(DE-600)1501518-x$$a10.1007/s10562-016-1711-z$$gVol. 146, no. 4, p. 851 - 860$$n4$$p851 - 860$$tCatalysis letters$$v146$$x1572-879X$$y2016
000829281 8564_ $$uhttps://juser.fz-juelich.de/record/829281/files/art%253A10.1007%252Fs10562-016-1711-z.pdf$$yRestricted
000829281 8564_ $$uhttps://juser.fz-juelich.de/record/829281/files/art%253A10.1007%252Fs10562-016-1711-z.gif?subformat=icon$$xicon$$yRestricted
000829281 8564_ $$uhttps://juser.fz-juelich.de/record/829281/files/art%253A10.1007%252Fs10562-016-1711-z.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000829281 8564_ $$uhttps://juser.fz-juelich.de/record/829281/files/art%253A10.1007%252Fs10562-016-1711-z.jpg?subformat=icon-180$$xicon-180$$yRestricted
000829281 8564_ $$uhttps://juser.fz-juelich.de/record/829281/files/art%253A10.1007%252Fs10562-016-1711-z.jpg?subformat=icon-640$$xicon-640$$yRestricted
000829281 8564_ $$uhttps://juser.fz-juelich.de/record/829281/files/art%253A10.1007%252Fs10562-016-1711-z.pdf?subformat=pdfa$$xpdfa$$yRestricted
000829281 909CO $$ooai:juser.fz-juelich.de:829281$$pVDB
000829281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162305$$aForschungszentrum Jülich$$b4$$kFZJ
000829281 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000829281 9141_ $$y2017
000829281 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829281 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000829281 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829281 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000829281 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCATAL LETT : 2015
000829281 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829281 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829281 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829281 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000829281 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829281 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829281 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829281 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000829281 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829281 920__ $$lyes
000829281 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000829281 980__ $$ajournal
000829281 980__ $$aVDB
000829281 980__ $$aUNRESTRICTED
000829281 980__ $$aI:(DE-Juel1)IEK-11-20140314
000829281 981__ $$aI:(DE-Juel1)IET-2-20140314