001     829281
005     20240712113011.0
024 7 _ |a 10.1007/s10562-016-1711-z
|2 doi
024 7 _ |a 1011-372X
|2 ISSN
024 7 _ |a 1572-879X
|2 ISSN
024 7 _ |a WOS:000372267200015
|2 WOS
037 _ _ |a FZJ-2017-03011
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Amende, M.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Dicyclohexylmethane as a Liquid Organic Hydrogen Carrier: A Model Study on the Dehydrogenation Mechanism over Pd(111)
260 _ _ |a Dordrecht [u.a.]
|c 2016
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1495006644_22014
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We have studied the dehydrogenation of the liquid organic hydrogen carrier (LOHC) dicyclohexylmethane (DCHM) to diphenylmethane (DPM) and its side reactions on a Pd(111) single crystal surface. The adsorption and thermal evolution of both DPM and DCHM was measured in situ in ultrahigh vacuum (UHV) using synchrotron radiation-based high-resolution X-ray photoelectron spectroscopy (HR-XPS). We found that after deposition at 170 K, the hydrogen-lean DPM undergoes C-H bond scission at the methylene bridge at 200 K and, starting at 360 K, complete dehydrogenation of the phenyl rings occurs. Above 600 K, atomic carbon incorporates into the Pd bulk. For the hydrogen-rich DCHM, the first stable dehydrogenation intermediate, a double π-allylic species, forms already at 190 K. Until 340 K, further dehydrogenation of the phenyl rings and of the methylene bridge occurs, yielding the same intermediate that is formed upon heating of DPM to this temperature, that is, DPM dehydrogenated at the methylene bridge. The onset for the complete dehydrogenation of this intermediate occurs at a much higher temperature than after adsorption of DPM. This behavior is mainly attributed to coadsorbed hydrogen from DCHM dehydrogenation. The results are discussed in comparison to our previous study of DPM and DCHM on Pt(111) revealing strong material dependencies.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gleichweit, C.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Xu, T.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Höfert, O.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wasserscheid, P.
|0 P:(DE-Juel1)162305
|b 4
700 1 _ |a Steinrück, H.-P.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Papp, Christian
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
700 1 _ |a Libuda, Jörg
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Koch, M.
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1007/s10562-016-1711-z
|g Vol. 146, no. 4, p. 851 - 860
|0 PERI:(DE-600)1501518-x
|n 4
|p 851 - 860
|t Catalysis letters
|v 146
|y 2016
|x 1572-879X
856 4 _ |u https://juser.fz-juelich.de/record/829281/files/art%253A10.1007%252Fs10562-016-1711-z.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/829281/files/art%253A10.1007%252Fs10562-016-1711-z.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/829281/files/art%253A10.1007%252Fs10562-016-1711-z.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/829281/files/art%253A10.1007%252Fs10562-016-1711-z.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/829281/files/art%253A10.1007%252Fs10562-016-1711-z.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/829281/files/art%253A10.1007%252Fs10562-016-1711-z.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:829281
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)162305
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CATAL LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21