000829298 001__ 829298
000829298 005__ 20240712113128.0
000829298 0247_ $$2doi$$a10.1039/C5CP07718D
000829298 0247_ $$2ISSN$$a1463-9076
000829298 0247_ $$2ISSN$$a1463-9084
000829298 0247_ $$2WOS$$aWOS:000369508100069
000829298 0247_ $$2altmetric$$aaltmetric:5002703
000829298 0247_ $$2pmid$$apmid:26771035
000829298 037__ $$aFZJ-2017-03028
000829298 082__ $$a540
000829298 1001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, J.$$b0$$eCorresponding author$$ufzj
000829298 245__ $$aThe truth about the 1st cycle Coulombic efficiency of LiNi $_{1/3}$ Co $_{1/3}$ Mn $_{1/3}$ O $_{2}$ (NCM) cathodes
000829298 260__ $$aCambridge$$bRSC Publ.$$c2016
000829298 3367_ $$2DRIVER$$aarticle
000829298 3367_ $$2DataCite$$aOutput Types/Journal article
000829298 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491919340_7467
000829298 3367_ $$2BibTeX$$aARTICLE
000829298 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829298 3367_ $$00$$2EndNote$$aJournal Article
000829298 520__ $$aThe 1st cycle Coulombic efficiency (CE) of LiNi1/3Co1/3Mn1/3O2 (NCM) at 4.6 V vs. Li/Li+ has been extensively investigated in NCM/Li half cells. It could be proven that the major part of the observed overall specific capacity loss (in total 36.3 mA h g−1) is reversible and induced by kinetic limitations, namely an impeded lithiation reaction during discharge. A measure facilitating the lithiation reaction, i.e. a constant potential (CP) step at the discharge cut-off potential, results in an increase in specific discharge capacity of 22.1 mA h g−1. This capacity increase during the CP step could be proven as a relithiation process by Li+ content determination in NCM via an ICP-OES measurement. In addition, a specific capacity loss of approx. 4.2 mA h g−1 could be determined as an intrinsic reaction to the NCM cathode material at room temperature (RT). In total, less than 10.0 mA h g−1 (=28% of the overall capacity loss) can be attributed to irreversible reactions, mainly to irreversible structural changes of NCM. Thus, the impact of parasitic reactions, such as oxidative electrolyte decomposition, on the irreversible capacity is negligible and could also be proven by on-line MS. As a consequence, the determination of the amount of extracted Li+ (“Li+ extraction ratio”) so far has been incorrect and must be calculated by the charge capacity (=delithiation amount) divided by the theoretical capacity. In a NCM/graphite full cell the relithiation amount during the constant voltage (CV) step is smaller than in the half cell, due to irreversible Li+ loss at graphite.
000829298 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000829298 588__ $$aDataset connected to CrossRef
000829298 7001_ $$0P:(DE-HGF)0$$aEvertz, M.$$b1
000829298 7001_ $$0P:(DE-HGF)0$$aStreipert, B.$$b2
000829298 7001_ $$0P:(DE-HGF)0$$aWagner, R.$$b3
000829298 7001_ $$0P:(DE-HGF)0$$aKlöpsch, R.$$b4
000829298 7001_ $$0P:(DE-HGF)0$$aVortmann, B.$$b5
000829298 7001_ $$0P:(DE-HGF)0$$aHahn, H.$$b6
000829298 7001_ $$0P:(DE-HGF)0$$aNowak, S.$$b7
000829298 7001_ $$0P:(DE-HGF)0$$aAmereller, M.$$b8
000829298 7001_ $$0P:(DE-HGF)0$$aGentschev, A.-C.$$b9
000829298 7001_ $$0P:(DE-HGF)0$$aLamp, P.$$b10
000829298 7001_ $$0P:(DE-Juel1)166130$$aWinter, M.$$b11$$ufzj
000829298 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C5CP07718D$$gVol. 18, no. 5, p. 3956 - 3965$$n5$$p3956 - 3965$$tPhysical chemistry, chemical physics$$v18$$x1463-9084$$y2016
000829298 8564_ $$uhttps://juser.fz-juelich.de/record/829298/files/c5cp07718d.pdf$$yRestricted
000829298 8564_ $$uhttps://juser.fz-juelich.de/record/829298/files/c5cp07718d.gif?subformat=icon$$xicon$$yRestricted
000829298 8564_ $$uhttps://juser.fz-juelich.de/record/829298/files/c5cp07718d.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000829298 8564_ $$uhttps://juser.fz-juelich.de/record/829298/files/c5cp07718d.jpg?subformat=icon-180$$xicon-180$$yRestricted
000829298 8564_ $$uhttps://juser.fz-juelich.de/record/829298/files/c5cp07718d.jpg?subformat=icon-640$$xicon-640$$yRestricted
000829298 8564_ $$uhttps://juser.fz-juelich.de/record/829298/files/c5cp07718d.pdf?subformat=pdfa$$xpdfa$$yRestricted
000829298 909CO $$ooai:juser.fz-juelich.de:829298$$pVDB
000829298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b0$$kFZJ
000829298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b11$$kFZJ
000829298 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000829298 9141_ $$y2017
000829298 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000829298 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000829298 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2015
000829298 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829298 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829298 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000829298 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829298 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829298 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829298 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829298 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829298 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000829298 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000829298 980__ $$ajournal
000829298 980__ $$aVDB
000829298 980__ $$aI:(DE-Juel1)IEK-12-20141217
000829298 980__ $$aUNRESTRICTED
000829298 981__ $$aI:(DE-Juel1)IMD-4-20141217