000829311 001__ 829311
000829311 005__ 20220930130120.0
000829311 0247_ $$2doi$$a10.1073/pnas.1614677114
000829311 0247_ $$2ISSN$$a0027-8424
000829311 0247_ $$2ISSN$$a1091-6490
000829311 0247_ $$2WOS$$aWOS:000399387400069
000829311 0247_ $$2Handle$$a2128/19610
000829311 0247_ $$2altmetric$$aaltmetric:18475057
000829311 0247_ $$2pmid$$apmid:28373571
000829311 037__ $$aFZJ-2017-03031
000829311 041__ $$aEnglish
000829311 082__ $$a000
000829311 1001_ $$0P:(DE-Juel1)131679$$aElmenhorst, David$$b0$$eCorresponding author
000829311 245__ $$aRecovery sleep after extended wakefulness restores elevated A 1 adenosine receptor availability in the human brain
000829311 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2017
000829311 3367_ $$2DRIVER$$aarticle
000829311 3367_ $$2DataCite$$aOutput Types/Journal article
000829311 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536135976_466
000829311 3367_ $$2BibTeX$$aARTICLE
000829311 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829311 3367_ $$00$$2EndNote$$aJournal Article
000829311 520__ $$aAdenosine and functional A1 adenosine receptor (A1AR) availability are supposed to mediate sleep–wake regulation and cognitive performance. We hypothesized that cerebral A1AR availability after an extended wake period decreases to a well-rested state after recovery sleep. [18F]CPFPX positron emission tomography was used to quantify A1AR availability in 15 healthy male adults after 52 h of sleep deprivation and following 14 h of recovery sleep. Data were additionally compared with A1AR values after 8 h of baseline sleep from an earlier dataset. Polysomnography, cognitive performance, and sleepiness were monitored. Recovery from sleep deprivation was associated with a decrease in A1AR availability in several brain regions, ranging from 11% (insula) to 14% (striatum). A1AR availabilities after recovery did not differ from baseline sleep in the control group. The degree of performance impairment, sleepiness, and homeostatic sleep-pressure response to sleep deprivation correlated negatively with the decrease in A1AR availability. Sleep deprivation resulted in a higher A1AR availability in the human brain. The increase that was observed after 52 h of wakefulness was restored to control levels during a 14-h recovery sleep episode. Individuals with a large increase in A1AR availability were more resilient to sleep-loss effects than those with a subtle increase. This pattern implies that differences in endogenous adenosine and A1AR availability might be causal for individual responses to sleep loss.
000829311 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000829311 588__ $$aDataset connected to CrossRef
000829311 7001_ $$0P:(DE-HGF)0$$aElmenhorst, Eva-Maria$$b1
000829311 7001_ $$0P:(DE-HGF)0$$aHennecke, Eva$$b2
000829311 7001_ $$0P:(DE-Juel1)131691$$aKroll, Tina$$b3$$ufzj
000829311 7001_ $$0P:(DE-Juel1)138474$$aMatusch, Andreas$$b4$$ufzj
000829311 7001_ $$0P:(DE-HGF)0$$aAeschbach, Daniel$$b5
000829311 7001_ $$0P:(DE-Juel1)131672$$aBauer, Andreas$$b6$$ufzj
000829311 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1614677114$$gp. 201614677 -$$n16$$p4243-4248/201614677$$tProceedings of the National Academy of Sciences of the United States of America$$v114$$x1091-6490$$y2017
000829311 8564_ $$uhttps://juser.fz-juelich.de/record/829311/files/PNAS-2017-Elmenhorst-4243-8.pdf$$yRestricted
000829311 8564_ $$uhttps://juser.fz-juelich.de/record/829311/files/PNAS-2017-Elmenhorst-4243-8.gif?subformat=icon$$xicon$$yRestricted
000829311 8564_ $$uhttps://juser.fz-juelich.de/record/829311/files/PNAS-2017-Elmenhorst-4243-8.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000829311 8564_ $$uhttps://juser.fz-juelich.de/record/829311/files/PNAS-2017-Elmenhorst-4243-8.jpg?subformat=icon-180$$xicon-180$$yRestricted
000829311 8564_ $$uhttps://juser.fz-juelich.de/record/829311/files/PNAS-2017-Elmenhorst-4243-8.jpg?subformat=icon-640$$xicon-640$$yRestricted
000829311 8564_ $$uhttps://juser.fz-juelich.de/record/829311/files/PNAS-2017-Elmenhorst-4243-8.pdf?subformat=pdfa$$xpdfa$$yRestricted
000829311 8564_ $$uhttps://juser.fz-juelich.de/record/829311/files/post-print.pdf$$yOpenAccess
000829311 8564_ $$uhttps://juser.fz-juelich.de/record/829311/files/post-print.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000829311 8767_ $$92017-05-12$$d2017-05-12$$ePublication charges$$jZahlung erfolgt$$lKK: Barbers$$pPNAS-130056-0$$zUSD 1700,-
000829311 8767_ $$92017-05-12$$d2017-05-12$$eOther$$jZahlung erfolgt$$lKK: Barbers$$pPNAS-130056-0$$zCredit card fee
000829311 909CO $$ooai:juser.fz-juelich.de:829311$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000829311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131679$$aForschungszentrum Jülich$$b0$$kFZJ
000829311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131691$$aForschungszentrum Jülich$$b3$$kFZJ
000829311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138474$$aForschungszentrum Jülich$$b4$$kFZJ
000829311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131672$$aForschungszentrum Jülich$$b6$$kFZJ
000829311 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000829311 9141_ $$y2017
000829311 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829311 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000829311 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829311 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000829311 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2015
000829311 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bP NATL ACAD SCI USA : 2015
000829311 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829311 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829311 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829311 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000829311 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000829311 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829311 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000829311 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000829311 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000829311 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829311 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829311 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000829311 980__ $$ajournal
000829311 980__ $$aVDB
000829311 980__ $$aUNRESTRICTED
000829311 980__ $$aI:(DE-Juel1)INM-2-20090406
000829311 980__ $$aAPC
000829311 9801_ $$aAPC
000829311 9801_ $$aFullTexts