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Abstract Over the last two decades, lattice Boltzmann

methods have become an increasingly popular tool to com-

pute the flow in complex geometries such as porous media.

In addition to single phase simulations allowing, for exam-

ple, a precise quantification of the permeability of a porous

sample, a number of extensions to the lattice Boltzmann

method are available which allow to study multiphase and

multicomponent flows on a pore scale level. In this article,

we give an extensive overview on a number of these diffuse
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interface models and discuss their advantages and disadvan-

tages. Furthermore, we shortly report on multiphase flows

containing solid particles, as well as implementation details

and optimization issues.
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1 Introduction

Fluid flow in porous media is a topic which is relevant in

the context of hydrocarbon production, groundwater flow,

catalysis, or the gas diffusion layers in fuel cells [1]. Oil and

gas transport in porous rock [2], the flow in underground

reservoirs and the propagation of chemical contaminants

in the vadose zone [3, 4], permeation of ink in paper [5]

and filtration and sedimentation operations [6] are just a

few examples from a wealth of possible applications. Most

of these examples involve not only single phase flows,

but multiple phases or fluid components. As such, a thor-

ough understanding of the underlying physical processes

by means of computer simulations requires accurate and

reliable numerical tools.

Multiphase flows in porous media are typically mod-

eled using macro-scale simulations, in which the conti-

nuity equation together with momentum and species bal-

ances is solved and constitutive equations such as Darcy’s

law are utilized. These models are based on the valid-

ity of the constitutive relationships (e.g. the multiphase

extension of Darcy’s Law), require some inputs for semi-

empirical parameters (e.g. relative permeability) and have

difficulties in accounting for heterogeneity and complex

pore interconnectivity and morphologies [7]. As a result,

macroscale simulations do not always capture effects asso-

ciated with the microscale structure in multiphase flows.

On the contrary, pore-scale simulations are able to capture

heterogeneity, interconnectivity and non-uniform flow

behaviour (e.g. various fingerings) that cannot be well

resolved at the macroscopic scale. In addition, pore-scale

simulations can provide detailed local information on fluid

distribution and velocity and enable the construction and

testing of new models or constitutive equations for macro-

scopic scales.

Pore-network models [8–16] are a viable tool for under-

standing multiphase flows at the pore scale, and they

are computationally efficient. These models, however, are

based upon simplified representations of the complex pore

geometry [17], which restricts their predictive capability

and accuracy.

Traditional CFD methods such as the volume-of-fluid

(VOF) method [18–21] and level set (LS) method [22–

24] simulate multiphase flows by solving the macroscopic

Navier-Stokes equations together with a proper technique

to track/capture the phase interface. It is challenging to use

VOF and LS methods for pore-scale simulations of multi-

phase flows in porous media because of the difficulties in

modelling and tracking the dynamic phase interfaces. Also,

they have difficulties incorporating fluid–solid interfacial

effects (e.g. surface wettability) in complex pore struc-

tures, which are consequences of microscopic fluid–solid

interactions.

Unlike traditional CFD methods, which are based on the

solution of macroscopic variables such as velocity, pres-

sure, and density, the lattice Boltzmann method (LBM) is

a pseudo-molecular method that tracks the evolution of the

particle distribution function of an assembly of molecules

and is built upon microscopic models and mesoscopic

kinetic equations [25–27]. The macroscopic variables are

obtained from moment integration of the particle distribu-

tion function. Even shortly after its introduction, more than

20 years ago, the LBM became an attractive alternative to

direct numerical solution of the stokes equation for single-

phase flows in porous media and complex geometries in

general [26, 28, 29]. In the LBM for multiphase flow simu-

lations, the fluid–fluid interface is not a sharp material line,

but a diffuse interface of finite width. The effective slip of

the contact line is caused by the relative diffusion of the two

fluid components in the vicinity of the contact line. There-

fore, there are no singularities in the stress tensor in the lat-

tice Boltzmann simulation of moving contact-line problems

while the no-slip condition is satisfied [30–35]. In addition,

unlike traditional CFD methods, there is no need for com-

plex interface tracking/capturing/resconstruction techniques

in the diffuse interface methods. Rather, the formation,

deformation and transport of the interface emerge through

the simulation results [36]. Furthermore, in the LBM all

computations involve, only local variables enabling highly

efficient parallel implementations based on simple domain

decomposition [37]. With more powerful computers becom-

ing available, it was possible to perform detailed simulations

of flow in artificially generated geometries [5, 38–40],

tomographic reconstructions of sandstone samples [29, 41–

44], or fibrous sheets of paper [45].

The remainder of this article is organised as follows: after

a more detailed introduction to the LBM in Section 2, we

review a number of different diffuse interface multiphase

and multicomponent models in Section 3. Section 3 also

introduces how particle suspensions can be simulated using

the LBM. Section 4 summarizes a few typical details to

be taken care of when implementing a lattice Boltzmann

code and Section 5 is comprised of a collection of possi-

ble applications of the several multiphase/multicomponent

models available. Section 6 summarizes our findings and the

advantages and limitations of the various methods.

2 The lattice Boltzmann method

The LBM can be seen as the successor of the lattice gas cel-

lular automaton (LGCA) which was first proposed in 1986

by Frisch, Hasslacher and Pomeau [46], as well as by Wol-

fram [47]. The LBM overcomes some limitations of the

LGCA such as not being Galilei-invariant and numerical

noise due to the Boolean nature of the algorithm. In contrast
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to the LGCA coarse, graining of the molecular processes

is not obtained by tracking individual discrete mesoscopic

fluid packets anymore. Instead, in the LBM, the dynamics of

the single-particle distribution function f (x, v, t) represent-

ing the probability to find a fluid particle with position x and

velocity v at time t is tracked [48–52]. Then, the density and

velocity of the macroscopically observable fluid are given

by ρ(x, t) =
∫

f dv and u(x, t) =
∫

f vdv, respectively. In

the non-interacting, long mean free path limit and with no

externally applied forces, the evolution of this function is

described by the Boltzmann equation,

(∂t + v · ∇) f = Ω[f ]. (1)

The left hand side describes changes in the distribution

function due to free particle motion. The collision oper-

ator Ω on the right hand side describes changes due to

pairwise collisions. In general, this is a complicated inte-

gral expression, but it is commonly simplified to the linear

Bhatnagar-Gross-Krook (BGK) form [53],

Ω[f ] ≃ − 1

τ

[

f − f (eq)
]

. (2)

This collision operator describes the relaxation towards a

Maxwell-Boltzmann equilibrium distribution f (eq) at a time

scale set by the characteristic relaxation time τ . The distri-

butions governed by the Boltzmann-BGK equation conserve

mass, momentum and energy and obey a non-equilibrium

form of the second law of thermodynamics [54]. Moreover,

the Navier-Stokes equations for macroscopic fluid flow are

obeyed in the limit of small Knudsen and Mach numbers

(see below) [54, 55].

By discretizing the single-particle distribution in time

and space, the lattice Boltzmann formulation is obtained.

Here, the positions x on which f is defined are restricted

to nodes of a lattice, and the velocities are restricted to a

set ei, i = 1, ..., N joining these nodes. N varies between

implementations and we refer to the article of Qian [52] for

an overview. We restrict ourselves to the popular D2Q9 and

D3Q19 realizations, which correspond to a 2D lattice with

nine possible velocities and a 3D lattice with 19 possible

velocities, respectively. To simplify the notation, fi(x, t) =
f (x, ei, t) represents the probability to find particles at a lat-

tice site x moving with velocity ei , at the discrete timestep

t . The density and momentum of the simulated fluid are

calculated as

ρ(x, t) = ρ0

∑

i

fi(x, t), (3)

and

ρ(x, t)u(x, t) = ρ0

∑

i

fi(x, t)ei, (4)

where ρ0 refers to a reference density which is kept at ρ0 =
1 in the remainder of this article. The pressure of the fluid is

calculated via an isothermal equation of state,

p = c2
s ρ. (5)

Here, cs = c/
√

3 is the lattice speed of sound and c = δx/δt

is the lattice speed. The lattice must be chosen carefully to

ensure isotropic behaviour of the simulated fluid [26]. The

lattice Boltzmann formulation can be obtained using alter-

native routes, including discretizing the continuum Boltz-

mann equation [56] or regarding it as a Boltzmann-level

approximation of the LGCA [57].

The LBM follows a two-step procedure, namely an

advection step followed by a collision step. In the advection

step, values of the distribution function are propagated to

adjacent lattice sites along their velocity vectors. This cor-

responds to the left-hand side of the continuum Boltzmann

equation. In the collision step, particles at each lattice site

are redistributed across the velocity vectors. This process

corresponds to the action of the collision operator and, in

the most simple case, takes the BGK form. The combina-

tion of the advection and collision steps results in the lattice

Boltzmann equation (LBE),

fi(x + eiδt , t + δt ) − fi(x, t) = Ωi(x, t). (6)

In most applications and the remainder of this article, the

reference density, timestep and lattice constant are chosen

to be ρ0 = 1, δt = 1 and δx = 1. The discretized local

equilibrium distribution is often given by a second-order

Taylor expansion of the Maxwell-Boltzmann equilibrium

distribution,

f
eq
i = wiρ

(

1 + 1

c2
s

ei · u + 1

2c4
s

(ei · u)2 − 1

2c2
s

|u|2
)

. (7)

Therein, the coefficients including the weights wi associ-

ated to the lattice discretisation and the speed of sound cs

are determined by a comparison of a first order Chapman-

Enskog expansion to the Navier-Stokes equations. The

kinematic viscosity of the fluid,

ν = c2
s

(

τ − 1

2

)

(8)

is determined by the relaxation parameter τ .

While the simplicity of the LBGK method has enabled

it to be successfully applied to a wide range of problems

[27, 58, 59], it also implies limitations to the formalism.

The implicit relationship between fluid properties and dis-

cretization parameters in Eq. 8 leads to numerical instability

at lower viscosities [60]. As indicated by the equation of

state in Eq. 5, the LBM approximates the Navier-Stokes

equations in the near-incompressible limit. To minimise

compressibility errors, and to adhere to the small-velocity

assumption, the Mach number, Ma = u/cs , has to be kept

small (i.e. Ma ≪ 1).
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To address some of these limitations, different

approaches and extensions to the formalism have been

introduced. At an early stage of the LBM’s development,

alternative collision schemes were introduced [61, 62]. In

particular, the multiple relaxation time (MRT) collision

operator can be written as [62–64],

ΩMRT
i (x, t) = −M

−1
ŜM

[

|f (x, t)〉 − |f eq(x, t)〉
]

. (9)

Herein M is an invertible transformation matrix, relating

the moments of the single particle velocity distribution f

to linear combinations of its discrete components fi . It

can be obtained by a Gram Schmidt orthogonalization of a

matrix representation of the stochastical moments. The col-

lision process is performed in the space of moments, where

Ŝ is a diagonal matrix of the individual relaxation times.

Thus, independent transport coefficients are introduced. For

example, in addition to the shear viscosity, the bulk viscosity

ζ = c2
s

6

(

τbulk − 1
2

)

can be controlled [64].

Starting from this general approach, simplifications and

extensions have led to the development of, for example, two

relaxation time (TRT) models [65, 66] as well as models

incorporating thermal fluctuations [67–70].

Further refinement of the method has been achieved by

identifying general formalisms for deriving higher order

expansions of the equilibrium distribution and lattice dis-

cretisations allowing to include higher order effects into the

model [71, 72].

The ease in handling boundaries is one of the reasons

for the LBM being well suited to simulating porous media

flows. Many boundary condition implementations maintain

the locality of LBE operations, which means that tortuous

pore network geometries can be modeled on an underly-

ing orthogonal grid, and that parallelization of the method

remains straightforward.

The simplest approach to model the interaction of fluid

and solid is the bounce-back scheme. It enforces the no-slip

condition at solid surfaces by reflecting particle distribution

functions from the boundary nodes back in the direction of

incidence. Advantages of the bounce-back condition are that

the required operations are local to a node and that the orien-

tation of the boundary with respect to the grid is irrelevant.

However, the simplicity of the bounce-back scheme is at the

expense of accuracy. It has been shown that generally it is

only first order in numerical accuracy [73] as opposed to the

second-order accuracy of the lattice Boltzmann equation at

internal fluid nodes [74]. It has also been shown [75] that the

bounce-back condition actually results in a boundary with

a finite relaxation time-dependent slip [76]. Nevertheless,

the bounce-back scheme is usually suitable for simulating

the fluid interaction at stationary boundaries such as the

Dolomite rock sample shown in Fig. 1a.

Pressure and velocity boundary conditions can be applied

in the LBM by assigning particle distribution functions at a

node which correspond to the prescribed macroscopic con-

straint. As an example, Zou and He [75] proposed a bound-

ary condition based on bouncing-back the non-equilibrium

part of the distribution function. It can be applied to velocity,

pressure and wall constraints. As with the bounce-back con-

dition, all required operations are local. While the original

implementation was limited to two dimensions and bound-

aries parallel to the orthogonal lattice directions, Hecht and

Harting presented how to overcome these limitations [77].

Periodic and stress-free boundary implementations are also

available, and a detailed review of other velocity boundary

condition implementations in the LBM can be found in [78].

3 Review of multiphase/multicomponent LBM
formulations

A number of multiphase LBM models have been proposed

in the literature. Among them, five representative mod-

els are the color gradient model [79–81], the inter-particle

potential model [82–84], the free-energy model [85, 86],

Fig. 1 Single phase flow in a

segmented, µCT image of a

Dolomite sample including a a

rendering of the pore volume

(i.e. the complement of the rock

volume) in the sample and b the

steady state flow profile in the

sample as computed by the

LBM with bounce-back

boundary conditions
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the mean-field theory model [87] and the stabilized diffuse-

interface model [88]. In this section, we review these models

with emphasis on some recent improvements and show

their advantages and limitations for pore-sale simulation of

multiphase flows in porous media.

3.1 The color gradient model

The color gradient model originated from the two-

component lattice-gas model proposed by Rothman &

Keller [89] and was first introduced by Gunstensen et

al. [79] for simulating immiscible binary fluids based on a

two-dimensional(2D) hexagonal lattice. Later, it was modi-

fied by Grunau et al. [90] to allow variations of density and

viscosity. In this model, “Red” and “Blue” distribution func-

tions f R
i and f B

i were introduced to represent two different

fluids. The total particle distribution function is defined as

fi = f R
i + f B

i . Each of the colored fluids undergoes the

collision and streaming steps,

f
k†
i (x, t) = f k

i (x, t) + Ωk
i (x, t), (10)

f k
i (x + eiδt , t + δt ) = f

k†
i (x, t), (11)

where the superscript k = R or B denotes the color (“Red”

or “Blue”), and the collision operator Ωk
i consists of three

sub-operators [81, 91],

Ωk
i =

(

Ωk
i

)(3)
[

(

Ωk
i

)(1)

+
(

Ωk
i

)(2)
]

. (12)

In Eq. 12, (Ωk
i )(1) is the BGK collision operator, defined

as
(

Ωk
i

)(1) = − 1
τk

(

f k
i − f

k,eq
i

)

, where τk is the dimen-

sionless relaxation time of fluid k, and f
k,eq
i is the equilib-

rium distribution function of f k
i . Conservation of mass for

each fluid and total momentum conservation require,

ρk =
∑

i

f k
i =

∑

i

f
k,eq
i , (13)

ρu =
∑

i

∑

k

f k
i ei =

∑

i

∑

k

f
k,eq
i ei, (14)

where ρk is the density of fluid k, ρ = ρR + ρB is the total

density, and u the local fluid velocity.
(

Ωk
i

)(2)
is a two-phase collision operator (i.e. perturba-

tion step) which contributes to the mixed interfacial region

and generates an interfacial tension. For a 2D hexagonal

lattice, the perturbation operator is given as [79, 90],

(

Ωk
i

)(2)

= Ak

2
|G|

[

(ei · G)2

|G|2 − 1

2

]

, (15)

where Ak is a free parameter controlling the interfacial ten-

sion, and G is the local color gradient which is defined

by G(x, t) =
∑

i[ρR(x + ei, t) − ρB(x + ei, t)]ei . How-

ever, Reis & Phillips [80] and Liu et al. [81] found that a

direct extension of the perturbation operator Eq. 15 to pop-

ular D2Q9 and D3Q19 lattices cannot recover the correct

Navier-Stokes equations for two-phase flows. To obtain the

correct interfacial force term for the D2Q9 lattice, Reis &

Phillips proposed an improved perturbation operator [80],

(

Ωk
i

)(2)

= Ak

2
|G|

[

wi

(ei · G)2

|G|2 − Bi

]

, (16)

where wi is the weight factor, and B0 = − 4
27

, B1−4 = 2
27

and B5−8 = 5
108

. Using the concept of a continuum sur-

face force (CSF) together with the constraints of mass and

momentum conservation, a generalized perturbation opera-

tor was derived recently by Liu et al. [81] for the D3Q19

lattice,

(

Ωk
i

)(2)

= Ak

2
|∇ρN |

[

wi

(ei · ∇ρN )2

|∇ρN |2 − Bi

]

, (17)

where the phase field ρN is defined as

ρN (x, t) = ρR(x, t) − ρB(x, t)

ρR(x, t) + ρB(x, t)
, −1 ≤ ρN ≤ 1, (18)

and

B0 = − 2 + 2χ

3χ + 12
c2, B1−6 = χ

6χ + 24
c2,

B7−18 = 1

6χ + 24
c2, (19)

with χ being a free parameter. In addition, an expression for

interfacial tension σ was analytically obtained without any

additional analysis and assumptions [81],

σ = 2

9
(AR + AB)τ, (20)

where τ is the relaxation time of the fluid mixture. Its

validity was demonstrated by stationary bubble tests [81].

Equation 20 suggests that the interfacial tension can be

flexibly chosen by controlling AR and AB .

To promote phase segregation and maintain the interface,

the recoloring operator
(

Ωk
i

)(3)
is applied, which enables

the interface to be sharp and, at the same time, prevents the

two fluids from mixing with each other. There are two recol-

oring algorithms widely used in the literature, namely the

recoloring algorithm of Gunstensen et al. [79] and the recol-

oring algorithm of Latva-Kokko and Rothman [92], which

are hereafter referred to as A1 and A2, respectively. In A1,

the distribution functions f
R†
i (x, t) and f

B†
i (x, t) are found

by maximizing the work done by the color gradient,
∑

i

[

f
R†
i (x, t) − f

B†
i (x, t)

]

ei · G, (21)

subject to the constraints of local conservation of the indi-

vidual fluid densities of the two components and local

conservation of the total distribution function in each direc-

tion. This recoloring algorithm can produce a very thin
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interface, but generates velocity fluctuations even for a non-

inclined planar interface [91]. In addition, when applied to

creeping flows, this recoloring algorithm can produce lattice

pinning, a phenomenon where the interface can be pinned

or attached to the simulation lattice rendering an effective

loss of Galilean invariance [92]. It was also identified that

there is an increasing tendency for lattice pinning as both the

Capillary and Reynolds numbers decrease [93]. Therefore,

this algorithm is not effective for simulating multiphase

flows in porous media, especially when the capillary force is

dominant. In A2, the recoloring operator is defined as [81],

(

ΩR
i

)(3) (

f R
i

)

= ρR

ρ
f ∗

i + β
ρRρB

ρ2
cos(ϕi)f

eq
i |u=0, (22)

(

ΩB
i

)(3) (

f B
i

)

= ρB

ρ
f ∗

i − β
ρRρB

ρ2
cos(ϕi)f

eq
i |u=0,(23)

where f ∗
i denotes the post-perturbation, pre-segregation

value of the total distribution function along the i-th lattice

direction, and f
eq
i =

∑

k f
k,eq
i is the total equilibrium dis-

tribution function. β is the segregation parameter related to

the interface thickness, and its value must be between 0 and

1 to ensure positive particle distribution functions. ϕ is the

angle between the color gradient G and the lattice vector ei ,

which is defined by,

cos(ϕi) = ei · ∇G

|ei ||∇G| . (24)

Note that G should be replaced by the phase field gradi-

ent ∇ρN when the perturbation operator Eq. 17 is applied.

Leclaire et al. [94] conducted a numerical comparison of

the recoloring operators A1 and A2 for an immiscible two-

phase flow by a series of benchmark cases and concluded

that the recoloring operator A2 greatly increases the rate of

convergence, improves the numerical stability and accuracy

of the solutions over a broad range of model parameters,

and significantly reduces spurious velocities and relieves

the lattice pinning problem. Several recent numerical stud-

ies [81, 95] indicated that, for a combination of Eq. 17

and the recoloring algorithm A2, the simulated density ratio

and viscosity ratio can be up to O(103) for stationary

bubble/droplet tests, whereas for dynamic problems the sim-

ulated density ratio is restricted to O(10) due to numerical

instability.

3.2 Inter-particle potential model

Shan and Chen [82] developed an inter-particle potential

model (also known as Shan-Chen model) through intro-

ducing microscopic interactions among nearest-neighboring

particles. The mean field force is incorporated by using

a modified equilibrium velocity in the collision oper-

ator. This force ensures phase separation and intro-

duces interfacial tension. The inter-particle potential model

includes two types, namely the single-component multi-

phase (SCMP) model [82, 83] and the multicomponent

multiphase (MCMP) model [82, 84]. In this section, we

only introduce the MCMP inter-particle potential model in

the model description for the sake of conciseness, while the

capability of SCMP model and several relevant studies are

still reviewed.

The LBE for the kth fluid is given by,

f k
i (x+eiδt , t+δt ) = f k

i (x, t)− 1

τk

[

f k
i (x, t) − f

k,eq
i (x, t)

]

,

(25)

where the equilibrium distribution function f
k,eq
i is written

as,

f
k,eq
i = ρkwi

[

1 + 3

c2
ei · u

eq

k + 9

2c4
(ei · u

eq

k )2 − 3

2c2
|ueq

k |2
]

. (26)

The macroscopic density and momentum of the kth fluid

are defined by ρk =
∑

i f k
i and ρkuk =

∑

i f k
i ei . The

equilibrium velocity of the kth fluid is modified to carry the

effect of the interactive force [84, 96],

u
eq

k = u′ + τkFk

ρk
, (27)

where u′ is a common velocity, which is taken as u′ =
(

∑

k
ρkuk

τk

)

/
(

∑

k
ρk

τk

)

to conserve the momentum in the

absence of forces. Fk is the net force exerted on the kth fluid

which includes both the fluid-fluid cohesion
(

F
f −f

k

)

and

the fluid-solid adhesion F
f −s

k , so that Fk = F
f −f

k + F
f −s

k .

In the inter-particle potential model, nearest neighbor

interactions are used to model the fluid–fluid cohesive

force [84, 96],

F
f −f

k (x, t) = −Gcψk(x, t)
∑

i

wiψk̄(x + eiδt , t)ei, (28)

where Gc is a parameter that controls the strength of the

cohesive force, k and k̄ denote two different fluid com-

ponents, and ψk is the interaction potential (or “effective

mass”) which is a function of local density. Analysis has

shown that the interaction potential function has to be mono-

tonically increasing and bounded [82]. Several forms of the

interaction potential are commonly utilized in the literature

and include, for example, ψk = ρk [96, 97] and ψk =
1 − e−ρk [82, 98]. The force F

f −f
k allows the generation

of interface between the different fluids and the equation of

state is given by p = 1
3
c2
s

∑

k ρk + 1
6
Gc

∑

kk̄ ψkψk̄ [96],

where the first term corresponds to the ideal gas and the

second term is the non-ideal part.

Repulsive interactions between the two components

(Gc > 0) are utilised to model systems of partly miscible or

immiscible fluid mixtures. While the input parameters are

determined strictly phenomenologically, this approach has

recently been shown equivalent to the explicit adjustment of

the free energy of the system [99].
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In the context of multiphase flow in oil reservoirs, sur-

factants are employed in enhanced oil recovery processes to

alter the relative wettability of oil and water. Amphiphiles

(i.e. surfactants) are comprised of a hydrophilic head group

and a hydrophobic tail. Amphiphilic behaviour is modeled

by a dipolar moment d with orientation θ defined for each

lattice site. The relaxation is a BGK-like process, where

the equilibrium moment is dependent on the surrounding

fluid densities [100]. The introduction of the dipole vector

accounts for three additional Shan-Chen type interactions,

namely an additional force term,

Fk,s = −2ψk(x, t)Gk,s

∑

i 
=0

d̃(x + eiδt , t) · �iψ
s(x + eiδt , t), (29)

for the regular fluid components k imposed by the sur-

factant species s. Therein, the tilde denotes post-collision

values and the second rank tensor �i ≡ I − 3 eiei

δ2
x

, with

the identity operator I weights the dipole force contribution

according to the orientation relative to the density gradient.

The surfactant species is subject to forcing as well, where

the contribution of the regular components k is given by,

Fk,s = 2ψ s(x, t)d̃(x, t) ·
∑

k

Gk,s

∑

i 
=0

�iψ
k(x + eiδt , t), (30)

and

Fss = − 12

‖ cs ‖2
ψ s(x, t)Gs,s ·

∑

i 
=0

ψ s(x + eiδt , t)

·
(

d̃(x + eiδt , t) · �i

·d̃(x, t)ei +
[

d̃(x + eiδt )d̃(x, t)

+d̃(x, t)d̃(x + eiδt , t)
]

· ei

)

, (31)

is the force due to self-interaction of the amphiphilic

species [100]. The amphiphilic lattice Boltzmann model

has been used successfully to describe domain growth in

mixtures of simple liquids and surfactants [101–103], the

formation of mesophases such as the so-called primitive,

diamond and gyroid phases [37, 104–106], and to inves-

tigate the behaviour of amphiphilic mixtures in complex

geometries such as microchannels and porous media [107–

109].

Furthermore, a force exerted by a surface interaction can

be introduced as [96, 97, 110],

F
f −s

k (x, t) = −Gads,kψk(x, t)
∑

i

wis(x + eiδt )ei, (32)

where Gads,k represents the strength of interaction between

the fluid k and the solid, and s(x + eiδt ) is an indicator

function which is equal to 1 for a solid node or 0 for a

fluid node, respectively. When ψk is chosen as ρk, Huang

et al. [96] proposed the following estimate for the contact

angle θ (which is measured in fluid 1),

cos(θ) = Gads,2 − Gads,1

Gc
ρ1−ρ2

2

, (33)

which suggests that different contact angles can be achieved

by adjusting the parameters Gads,k .

Recently, several methods have been developed to alle-

viate the limitations of the original inter-particle poten-

tial model and improve its performance. These tech-

niques include incorporating a realistic equation of state

into the model [111, 112], increasing the isotropy order

of the interactive force [113, 114], improving the force

scheme [115–118], and using the Multi-Relaxation Time

(MRT) scheme [109, 119] instead of the BGK approxi-

mation. These techniques have been demonstrated to be

effective in reducing the magnitude of spurious velocities,

eliminating the unphysical dependence of equilibrium den-

sity and interfacial tension on viscosity (relaxation time),

and increasing the viscosity and density ratios in simple

systems [120–124]. As shown by Porter et al. [120], the

fourth-order isotropy in the interactive force results in sta-

ble bubble simulations for a viscosity ratio of up to 300,

whereas the tenth-order isotropy result is in stable bubble

simulations for a viscosity ratio of up to 1050. However,

the effectiveness of these improved models in dealing with

multiphase flow in complex porous media has not been

fully investigated and is an active research topic. In a recent

study, it was found that the interfacial width associated

with the interparticle potential model is significantly larger

than for the color gradient model or the free-energy model

introduced below [125]. However, this finding could not

be confirmed by the authors of the current paper. We find

an interfacial width which is comparable to the free-energy

model (about five lattice units).

3.3 Free-energy model

The free-energy model proposed by Swift et al. [85, 86]

is built upon the phase-field theory, in which a free-energy

functional is used to account for the interfacial tension

effects and describe the evolution of interface dynamics

in a thermodynamically consistent manner. Similar to the

inter-particle potential model [82], the free-energy model

also includes both SCMP model and MCMP models [86].

The SCMP free-energy model can satisfy the local con-

servation of mass and momentum, but it suffers from a

lack of Galilean invariance since density (pressure) gradi-

ents are of order O(1) at liquid–gas interfaces. However,

errors due to violation of Galilean invariance are insignifi-

cant for the MCMP free-energy model, which uses binary

fluids with similar density so that the pressure gradients in

the interfacial regions are much smaller [126]. Therefore,
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the MCMP free-energy model has been applied to under-

stand multiphase flows in porous media especially in the

situation where inertial effects can be neglected [127, 128].

In the MCMP free-energy model for two-phase system

such as fluids ”1” and ”2” which have density of ρ1 and ρ2,

respectively, two distribution functions fi(x, t) and gi(x, t)

are used to model density ρ = ρ1 + ρ2, velocity u, and

the order parameter φ which represents the different phases,

respectively. The time evolution equations for the distribu-

tion functions, using the standard BGK approximation, can

be written as,

fi(x + eiδt , t + δt ) − fi(x, t) = 1

τf

[

f
eq
i (x, t) − fi(x, t)

]

,(34)

gi(x + eiδt , t + δt ) − gi(x, t) = 1

τg

[

g
eq
i (x, t) − gi(x, t)

]

, (35)

where τf and τg are two independent relaxation parameters;

f
eq
i and g

eq
i are the equilibrium distributions of fi and gi .

The underlying physical properties of lattice Boltzmann

schemes are determined via the hydrodynamic moments of

the equilibrium distribution functions. The moments of the

distribution functions should satisfy [86]

∑

i

fi =
∑

i

f
eq
i = ρ;

∑

i

gi =
∑

i

g
eq
i = φ, (36)

∑

i

fiei =
∑

i

f
eq

i ei = ρu;
∑

i

g
eq

i ei = φu, (37)

∑

i

fieie
T
i = P + ρuuT ;

∑

i

gieie
T
i = ŴµI + φuuT , (38)

where P is the pressure tensor, and Ŵ is a coefficient which

controls the phase interface diffusion and is related to the

mobility M of the fluid as follows [86, 129],

M = Ŵ

(

τg − 1

2

)

δt . (39)

Following the constraints of Eqs. 36–38, the equilibrium

distributions f
eq
i and g

eq
i , which are assumed to be a power

series in terms of the local velocity, can be written as [130],

f
eq
i = Fi + ρwi

(

3

c2
ei · u + 9

2c4
(ei · u)2 − 3

2c2
|u|2

)

, (40)

g
eq
i = wi

[

Ŵµ

c2
s

+ φ

(

3

c2
ei · u + 9

2c4
(ei · u)2 − 3

2c2
|u|2

)]

,(41)

for a D2Q9 lattice with i = 1, ..., 8, where the coefficient

Fi is given by,

Fi =
{

eT
i P ei/2c4 − (Pxx + Pyy)/12c2 i = 1 − 4,

eT
i P ei/8c4 − (Pxx + Pyy)/6c2 i = 5 − 8.

(42)

In addition, the equilibrium distributions for the rest parti-

cles are chosen to ensure mass conservation, f
eq

0 = ρ −
∑

i>0 f
eq
i and g

eq

0 = φ −
∑

i>0 g
eq
i .

The pressure tensor P and the interfacial tension in a two-

phase system, as well as the wetting boundary condition at

solid walls can be derived from the free-energy functional

of the system, which is defined as a function of the order

parameter φ as follows [31],

F (φ) =
∫

V

(

�(φ) + κ

2
|∇φ|2 + ρc2

s ln ρ
)

dV +
∫

S

fw(φS)dS, (43)

where �(φ) is the bulk free energy density and takes a

double-well form, �(φ) = A
4
(φ2 − 1)2, with A being a

positive constant controlling the interaction energy between

two fluids. The term κ
2
|∇φ|2 accounts for the excess free

energy in the interfacial region. The surface energy density

is fw(φS) = −ωφS , with φS being the order parameter on

the solid surface and ω being a constant depending on the

contact angle, as will be discussed later. The fluid volume

and fluid wall interface are denoted as V and S, respec-

tively. Note that the final term in the first integral does

not affect the phase behaviour and is introduced to enforce

incompressibility in the LBM.

The chemical potential µ is defined as the variational

derivative of the free energy functional with respect to the

order parameter,

µ = δF

δφ
= � ′(φ) − κ∇2φ = Aφ(φ2 − 1) − κ∇2φ. (44)

The pressure tensor is responsible for generation of inter-

facial tension and should follow the Gibbs-Duhem rela-

tion [131],

∇ · P = ∇ρc2
s + φ∇µ. (45)

A suitable choice of pressure tensor, which fulfils Eq. 45

and reduces to the usual bulk pressure if no gradients of the

order parameter are present, is [131],

P =
[

pb − κ

2
(∇φ)2 − κφ∇2φ

]

I + κ(∇φ)(∇φ)T , (46)

where pb is the bulk pressure and given by pb = ρc2
s +

A
(

− 1
2
φ2 + 3

4
φ4

)

.

For a flat interface with x being its normal direction, the

order parameter profile across the interface can be given

by φ = tanh(x/ξ), where ξ is a measure of the interface

thickness, which is given by ξ =
√

2κ/A. The interfacial

tension is evaluated according to thermodynamic theory as

σ =
∫ +∞
−∞ κ

(

dφ
dx

)2
dx = 4κ

3ξ
.

Using the Chapman-Enskog multiscale analysis [86],

the evolution functions Eqs. 34 and 35 can lead to the

Navier-Stokes equations for a two-phase system and the
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Cahn-Hilliard equation for interface evolution under the low

Mach number assumption,

∂ρ

∂t
+ ∇ · (ρu) = 0, (47)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇ · P + ∇ · (η∇u), (48)

∂φ

∂t
+ ∇ · (φu) = M∇2µ, (49)

where the dynamic viscosity η is related to the relaxation

time τf in Eq. 34 by η = ρ(τf − 0.5)c2
s δt . To account

for unequal viscosities of the two fluids, the viscosity at the

phase interface can be evaluated by [131, 132],

η(φ) = 1 + φ

2
η1 + 1 − φ

2
η2 or

1

η(φ)
= 1 + φ

2η1

+ 1 − φ

2η2

, (50)

where η1 and η2 denote the viscosities of fluid 1 and 2 with

the equilibrium order parameter of 1 and −1, respectively.

Minimizing the free-energy functional F at equilib-

rium condition results in the following natural boundary

condition at the wall [31],

κ
∂φ

∂n
= −ω, (51)

where n is the local normal direction of the wall pointing

into the fluid. The static contact angle θ (measured in the

fluid 1) can be shown to satisfy the following equation,

cos(θ) = (1 + �)3/2 − (1 − �)3/2

2
, (52)

where the wetting potential � is given by,

� = ω/
√

κA/2. (53)

From Eq. 52, the wetting potential can be obtained explicitly

as,

� = 2sign
(π

2
− θ

)

[

cos
β

3

(

1 − cos
β

3

)]1/2

, (54)

where β = arccos(sin2 θ) and sign(.) is the sign function.

The wetting boundary condition at the solid wall can

be implemented following the method proposed by Niu

et al. [128]. In this method, the order parameter derivative

in Eq. 51 is evaluated by the first-order finite difference as

∂φ/∂n = (φf − φS)/δx with φS being the order parameter

of the solid and φf the order parameter of the fluid lattices

adjacent to the solid wall. By substituting the finite differ-

ences into Eq. 51 and averaging them over all fluid nodes

adjacent to the solid wall, the order parameter φS can be

approximated by,

φS =
∑

N

(

φf − ω
κ
δx

)

N
. (55)

Here, N is the total number of the fluid sites which are near-

est to the solid walls. Note that Eq. 55 can be easily applied

to complex solid boundaries as in porous media.

In the MCMP free-energy model developed by Swift et

al. [86], which introduces the interfacial tension force by

imposing additional constraints on the equilibrium distri-

bution function, the unphysical spurious velocities, caused

by a slight imbalance between the stresses in the interfacial

region, are pronounced near the interfaces and solid sur-

faces. Pooley et al. [133] identified that the strong spurious

velocities in the steady state lead to an incorrect equilibrium

contact angle for binary fluids with different viscosities. The

key to reducing spurious velocities lies in the formulation

of treating the interfacial tension force [134]. Jacqmin [135]

suggested the chemical potential form of the interfacial

tension force, guaranteed to generate motionless equilib-

rium states without spurious velocities. Jamet et al. [136]

later showed that the chemical potential form can ensure

the correct energy transfer between the kinetic energy and

the interfacial tension energy. In the free-energy model of

potential form, Eq. 45 is often rewritten as [131, 137],

∇ · P = ∇p̃ − µ∇φ, (56)

where p̃ = ρc2
s + φµ is the modified pressure. Once the

pressure tensor is expressed as Eq. 56 in the Navier-Stokes

equations, p̃ can be simply incorporated in the modified

equilibrium distribution function and the interfacial force

term, FS = −µ∇φ, can be treated as an external force in

the lattice Boltzmann implementation. Following the work

of Liu and Zhang [131], the time evolution equation for fi

can be replaced by,

fi(x + eiδt , t + δt ) − fi(x, t) = 1

τf

[

f
eq
i (x, t) − fi(x, t)

]

+ Hi ,(57)

when the chemical potential form is employed. In order to

recover the correct Navier-Stokes equations, the moments

of f
eq
i and Hi should satisfy,

∑

i

f
eq
i = ρ;

∑

i

f
eq
i ei = ρu;

∑

i

f
eq
i eie

T
i = p̃I + ρuuT , (58)

∑

i

Hi = 0;
∑

i

Hiei = δt

(

1 − 1

2τf

)

FS;

∑

i

Hieie
T
i = δt

(

1 − 1

2τf

)

(

uFT
S + FSuT

)

, (59)

which leads to,

f
eq
i = wi

[

Ai + ρ

(

3

c2
ei · u + 9

2c4
(ei · u)2 − 3

2c2
|u|2

)]

, (60)

Hi =
(

1 − 1

2τf

)

wi

[

ei − u

c2
s

+ ei · u

c4
s

ei

]

· FSδt , (61)
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where the coefficient Ai is given by,

Ai =
{

p̃/c2
s i > 0,

[

p̃ − (1 − w0)p̃/c2
s

]

/w0 i = 0.
(62)

Note that the fluid velocity is re-defined as ρu =
∑

i fiei + 1
2
FSδt to carry some effects of the external

force. Although the free-energy model proposed by Swift

et al. [86] and its potential form are completely equiva-

lent mathematically, they produce different discretization

errors for the calculation of the interfacial tension force,

leading to the difference in magnitude of spurious veloc-

ities. It can be observed that the free-energy model of

potential form is able to produce much smaller spurious

velocity than the other two models due to the smaller dis-

cretization error introduced in the treatment of interfacial

tension force. Since spurious velocities are effectively sup-

pressed, the free-energy model of potential form with SRT

and bounce-back boundary condition is also capable of cap-

turing the correct equilibrium contact angle for both fluids

with different viscosities.

3.4 Mean-field theory model

In the mean-field theory model [87], interfacial dynam-

ics, such as phase segregation and interfacial tension, are

modeled by incorporating molecular interactions. Using

the mean-field approximation for intermolecular interac-

tion and following the treatment of the excluded volume

effect by Enskog, the effective intermolecular force can be

expressed as,

F = −∇ψ + FS = −∇ψ + κρ∇∇2ρ, (63)

where ψ(ρ) is a function of the density and is related to the

pressure by ψ(ρ) = p − ρc2
s . The pressure p is chosen to

satisfy the Carnahan-Starling equation of state,

p(φ) = φRT

[

1 + φ + φ2 − φ3

(1 − φ)3

]

− aφ2, (64)

where R is the gas constant, T is the temperature, and the

parameter a determines the attraction strength.

The lattice Boltzmann equations are derived from the

continuous Boltzmann equation with appropriate approx-

imations suitable for incompressible flow. The stability

is improved by reducing the effect of numerical errors

in calculation of molecular interactions. Specifically, two

distribution functions, an index distribution function fi

and a pressure distribution function gi , are employed to

describe the evolution of the order parameter and the

velocity/pressure field, respectively, and the LBEs for the

two distributions are [87],

fi(x + eiδt , t + δt ) − fi(x, t) = −
fi(x, t) − f

eq
i (x, t)

τ

−
(

1 − 1

2τ

)

(ei − u) · ∇ψ(φ)

c2
s

Ŵi(u)δt , (65)

gi(x + eiδt , t + δt ) − gi(x, t) = −
gi(x, t) − g

eq
i (x, t)

τ

−
(

1 − 1

2τ

)

(ei − u) · {Ŵi(u)FS − (Ŵi(u) − Ŵi(0))∇ψ(ρ)}δt , (66)

where τ is the relaxation time that is related to the kinematic

viscosity by ν = c2
s (τ −0.5)δt and the function Ŵi is defined

by,

Ŵi(u) = wi

(

1 + ei · u

c2
s

+ (ei · u)2

2c4
s

− |u|2
2c2

s

)

. (67)

The equilibrium distribution functions f
eq
i and g

eq
i are

taken as,

f
eq
i = wiφ

[

1 + ei · u

c2
s

+ (ei · u)2

2c4
s

− |u|2
2c2

s

]

, (68)

g
eq
i = wi

{

p + ρc2
s

[

ei · u

c2
s

+ (ei · u)2

2c4
s

− |u|2
2c2

s

]}

. (69)

The macroscopic variables are calculated through,

φ =
∑

i

fi; p =
∑

i

gi −
1

2
u∇ψ(ρ)δt ; ρu = 1

c2
s

∑

i

giei +
1

2
FSδt .

(70)

The density and kinematic viscosity of the fluid mixture are

calculated from the index function,

ρ(φ) = ρV + φ − φV

φL − φV

(ρL−ρV ); ν(φ) = νV + φ − φV

φL − φV

(νL−νV ),

(71)

where ρL and ρV are the densities of the liquid and vapor

phase, respectively, νL and νV are the corresponding kine-

matic viscosities, and φL and φV are the minimum and

maximum values of the index function, respectively, which

can be obtained through Maxwell’s equal area construc-

tion. For a = 12RT , one can obtain φG = 0.02283

and φL = 0.25029. By the transformation of the parti-

cle distribution function for mass and momentum into that

for hydrodynamic pressure and momentum, the numerical

stability is enhanced in Eq. 66 due to reduction of dis-

cretization error of the forcing term (i.e. the leading order of

the intermolecular forcing terms was reduced from O(1) to

O(u) [87]). Although this model is more robust than most

of the previous LBMs, it is restricted to density ratios up

to approximately 15 [138]. The derivation and more details
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of the mean-field theory model can be found in [87]. In

the mean-field theory model, the interfacial tension is con-

trolled by the parameter κ in FS , which plays a similar role

as the interaction parameter Gc in the inter-particle poten-

tial model, and therefore stationary bubble tests are required

to obtain the value of interfacial tension in practical appli-

cations. In addition, in order to introduce wetting properties

at the solid surface, Yiotis et al. [139] proposed imposing

ρ = ρS on lattice nodes within the solid phase. By choos-

ing ρS , different contact angles can be achieved on the solid

surface.

3.5 Stabilized diffuse-interface model

Lattice Boltzmann simulation of multiphase flows with high

density ratios (HDRs) is a challenging task [140]. There

has been an ongoing effort to improve the stability of

LBM for HDR multiphase flows. To date, the most com-

monly used HDR multiphase LBMs include the free-energy

approach of Inamuro et al. [141], the HDR model of Lee

& Lin [142] and the stabilized diffuse-interface model [88].

However, the former two have exposed some deficiencies.

In the free-energy approach of Inamuro et al. [141], a

projection step is applied to enforce the continuity condi-

tion after every collision-stream step, which would reduce

greatly the efficiency of the method. Also, this approach

needs to specify the cut-off value of the order parameter in

order to avoid numerical instability, which can give rise to

some non-physical disturbances even though the divergence

of the velocity field is zero, and it is therefore inaccu-

rate for many incompressible flows although the projection

step is employed to secure the incompressible condition. As

pointed out by Zheng et al. [143], the HDR model of Lee

& Lin [142] cannot lead to the correct governing equation

for interface evolution (i.e. the Cahn-Hilliard equation). In

addition, some additional efforts are still required for this

model to account for the wetting of fluid–solid interfaces.

The stabilized diffuse-interface model has great potential to

simulate HDR multiphase flows at the pore scale in porous

media and can simulate a density ratio as high as 1000 with

negligible spurious velocities and correctly model contact-

line dynamics. Essentially, this model possesses an identical

theoretical basis (i.e. Cahn-Hilliard theory) with the CFD-

based phase-field (PF) method. It can be regarded as the

PF method solved by the LBEs with a stable discretization

technique [144].

In the stabilized diffuse-interface model, the two-phase

fluids, e.g. a gas and liquid, are assumed to be incompress-

ible, immiscible, and have different densities and viscosi-

ties. The order parameter C is defined as the volume fraction

of one of the two phases. Thus, C is assumed to be con-

stant in the bulk phases (e.g. C = 0 for the gas phase while

C = 1 for the liquid phase). Assuming that interactions

between the fluids and the solid surface are of short-range

and appear in a surface integral, the total free energy of a

system is taken as the following form [88],

�b + �s =
∫

V

(

E0(C) + κ

2
|∇C|2

)

dV

+
∫

S

(

φ0 − φ1Cs + φ2C
2
s − φ3C

3
s + · · ·

)

dS,(72)

where the bulk energy is taken as E0 = βC2(1−C)2 with β

being a constant, κ is the gradient parameter, Cs is the order

parameter at a solid surface, and φi with i = 0, 1, 2, · · · are

constant coefficients. The chemical potential µ is defined

as the variational derivative of the volume-integral term in

Eq. 72 with respect to C,

µ = ∂E0

∂C
− κ∇2φ = 2βC(C − 1)(2C − 1) − κ∇2φ. (73)

For a planar interface at equilibrium, the interfacial profile

can be obtained through µ = 0,

C(x) = 1

2
+ 1

2
tanh

(

2x

ξ

)

, (74)

where ξ is the interface thickness defined by,

ξ =
√

8κ/β. (75)

The interfacial tension between liquid and gas is defined as

the excess of free energy at the interface,

σ =
∫ 1

0

√

2κE0(C)dC =
√

2κβ

6
. (76)

Equations 75 and 76 suggest that the interfacial tension

and the interface thickness are easily controlled through the

parameters κ and β.

In order to prevent the negative equilibrium density on

a non-wetting surface, it is necessary to retain the higher

order terms in �S . By choosing φ0 = φ1 = 0, φ2 = 1
2
φc,

and φ3 = 1
3
φc, a cubic boundary condition for ∇2C is

established [88],

∂C

∂n
|s = φc

κ

(

Cs − C2
s

)

, (77)

where φc is related to the equilibrium contact angle θ via

Young’s law,

φc = −
√

2κβ cos(θ). (78)

Note that the cubic boundary condition has been widely

used to simulate two-phase flows with moving contact

lines [145–148]. It was demonstrated numerically that such

a boundary condition can eliminate the spurious varia-

tion of the order parameter at solid boundaries, thereby
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facilitating the better capturing of the correct physics than

its lower-order counterparts (e.g. Eq. 51) [147].

Considering the second-order derivative term of the

chemical potential in the Cahn-Hilliard equation, a zero-flux

boundary condition should be imposed at the solid boundary

to ensure no diffuse flux across the boundary,

∂µ

∂n
|S = 0. (79)

Similar to the mean-field theory model, two particle dis-

tribution functions (PDFs) are employed in the stabilized

diffuse-interface model. One is the order parameter dis-

tribution function, which is used to capture the interface

between different phases, and the other is the pressure distri-

bution function for solving the hydrodynamic pressure and

fluid momentum. The evolution equations of the PDFs can

be derived through the discrete Boltzmann equation (DBE)

with the trapezoidal rule applied along characteristics over

the time interval (t, t + δt ) [88]. To ensure numerical sta-

bility in solving HDR problems, the second-order biased

difference scheme is applied to discretize the gradient oper-

ators involved in forcing terms at the time t while the

standard central difference scheme is applied at the time

t + δt [88, 142]. The resulting evolution equations are

[144],

gα(x + eαδt , t + δt ) − gα(x, t) = 1
τ+1/2

[

g
eq
α (x, t) − gα(x, t)

]

+δt (eα − u) ·
[

∇MDρc2
s (Ŵα − wα) − (C∇MDµ − ρg)Ŵα

]∣

∣

(x,t)
, (80)

hα(x + eαδt , t + δt ) = h
eq
α (x, t) + δt

2
Mc∇2µŴα |(x,t) + δt

2
Mc∇2µŴα |(x+eαδt ,t)

+δt (eα − u) ·
[

∇MDC − C

ρc2
s
(∇MDp + C∇MDµ − ρg)

]

Ŵα

∣

∣

∣

(x,t)
, (81)

where g is the gravitational acceleration, gα and hα are

the PDFs for the momentum and the order parameter,

respectively, and g
eq
α and h

eq
α are the corresponding equilib-

rium PDFs. The superscript ‘MD’ on gradient denotes the

second-order mixed difference, which is an average of the

central difference (denoted by the superscript ‘CD’) and the

biased difference (denoted by the superscript ‘BD’). As sug-

gested in Ref. [88], the directional derivatives (of a variable

ϕ) are evaluated by,

δt eα · ∇CDϕ

∣

∣

∣

(x)
= 1

2
[ϕ(x + eαδt ) − ϕ(x − eαδt )] , (82)

δt eα · ∇BDϕ

∣

∣

∣

(x)
= 1

2
[4ϕ(x + eαδt ) − ϕ(x + 2eαδt ) − 3ϕ(x))] , (83)

δt eα · ∇MDϕ

∣

∣

∣

(x)
= 1

2

(

δt eα · ∇CDϕ

∣

∣

∣

(x)
+ δt eα · ∇BDϕ

∣

∣

∣

(x)

)

. (84)

Derivatives other than the directional derivatives can

be obtained by taking moments of the directional deriva-

tives with appropriate weights. The first- and second-order

derivatives are calculated as [88],

∇CDϕ

∣

∣

∣

(x)
= 1

2c2
s δt

∑

α

wαeα [ϕ(x + eαδt ) − ϕ(x − eαδt )] , (85)

∇BDϕ

∣

∣

∣

(x)
= 1

2c2
s δt

∑

α

wαeα [4ϕ(x + eαδt ) − ϕ(x + 2eαδt ) − 3ϕ(x))] ,(86)

∇MDϕ

∣

∣

∣

(x)
= 1

2

(

∇CDϕ

∣

∣

∣

(x)
+ ∇BDϕ

∣

∣

∣

(x)

)

, (87)

∇2ϕ

∣

∣

∣

(x)
= 1

c2
s δ

2
t

∑

α

wα [ϕ(x + eαδt ) − 2ϕ(x) + ϕ(x − eαδt )] . (88)

The equilibrium PDFs g
eq
α and h

eq
α are given by,

geq
α = wα

(

p − ρc2
s

)

+ ρc2
s Ŵα − δt

2
(eα − u) ·

[

∇CDρc2
s

×(Ŵα−wα)−(C∇CDµ − ρg)Ŵα

]

,

(89)

heq
α =CŴα− δt

2
(eα−u)·

[

∇CDC − C

ρc2
s

(∇CDp + C∇CDµ − ρg)

]

Ŵα .

(90)

Through the Chapman-Enskog analysis [149, 150], the fol-

lowing macroscopic equations can be derived from Eqs. 80

and 81 in the low Mach number limit,

1

ρc2
s

(

∂p

∂t
+ u · ∇p

)

+ ∇ · u = 0, (91)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ ·

[

η(∇u + ∇uT )
]

− C∇µ + ρg, (92)

∂φ

∂t
+ u · ∇φ = M∇2µ, (93)

where the dynamic viscosity is given by η = ρτc2
s δt . For

incompressible flows, ∂tp is negligibly small and u·∇p is of

the order of O(Ma3). Thus, the divergence-free condition

can be approximately satisfied. However, Eq. 92 is inconsis-

tent with the target momentum equation in the phase-field

model due to the error term u(∂tρ+u·∇ρ) 
= 0. To eliminate

the error term and recover the correct momentum equation,

Li et al. [149] and Liu et al. [150] proposed to introduce an

additional force term,
dρ
dC

M∇2µu to the LBEs. Considering

that the Reynolds number is typically very small, the addi-

tional force term is believed to have only a slight effect on

multiphase flows in porous media [149]. Hence, the addi-

tional force term is not involved in the above evolution

equations of PDFs for the sake of simplicity.



Comput Geosci (2016) 20:777–805 789

Finally, the order parameter, the hydrodynamic pressure,

and the fluid velocity are calculated by taking the zeroth-

and the first-order moments of the PDFs,

C =
∑

α

hα, ρu = 1

c2
s

∑

α

gαeα − δt

2
(C∇CDµ − ρg),

p =
∑

α

gα + δt

2
u · ∇CDρc2

s . (94)

and the density and the relaxation time of the fluid mixture

are calculated by [88],

ρ = ρLC + ρG(1 − C), (95)

1

τ
= C

τL

+ 1 − C

τG

, (96)

where τL (τG) is the relaxation time of liquid (gas) phase.

It was shown [88] that Eq. 96 can produce monotonically

varying dynamic viscosity, whereas a popular choice with

τ calculated by τ = τLC + τG(1 − C) shows a peak of

dynamic viscosity in the interface region with a magnitude

several times larger than the bulk viscosities.

This model’s capability for HDR multiphase flows has

been validated by several benchmark cases including the

test of Laplace’s law, simulation of static contact angles, as

well as droplet deformation and breakup in a simple shear

flow [88, 151]. It was found that this model can simulate

two-phase flows with a liquid to gas density ratio approach-

ing 1000. An addition, spurious velocities produced by the

model are small, which are attributed to the interfacial force

of potential form and the stable numerical discretization

for estimating various derivatives. However, compared with

other multiphase LBMs, the stabilized diffuse-interface

model is quite complex and the computational efficiency is

very low since the numerical implementation involves the

discretization of many directional derivatives which need to

be evaluated in every lattice direction. Liu et al. [81] recently

presented a quantitative comparison of the required com-

putational time between the color gradient model and the

stabilized diffuse-interface model. Both models were used

to simulate the stationary bubble case with a density ratio of

100. The required CPU time per timestep is roughly twice

as long for the stabilized diffuse-interface model as com-

pared to the color gradient model. In addition, the stabilized

diffuse-interface model needs 23 times more timesteps to

achieve the same stopping criterion. Similar to the free-

energy model, this model is also built upon the phase-field

theory, so that small droplets/bubbles also tend to dissolve

as the system evolves towards an equilibrium state. Previ-

ous numerical experiments have demonstrated [150, 152]

that a feasible approach for reducing the droplet dissolu-

tion is to replace the constant mobility with a variable one,

which depends on the order parameter through, for example,

M = Mc

√

C2(1 − C)2 with Mc being a constant.

3.6 Particle suspensions

The terms “multiphase” or “multicomponent” flow might

not only describe mixtures of different fluids or fluid phases,

but are also adequate to classify fluid flows with floating

objects such as suspensions or polymer solutions. In porous

media applications, suspension flows are relevant in the

context of, for example, underground transport of liberated

sand, clay or contaminants, filter applications, or the devel-

opment of highly efficient catalysts. The individual particles

are usually treated by a particle-based method, such as the

discrete element method (DEM) or molecular dynamics

(MD), and momentum is transferred between them and the

fluid after a sufficiently small number of timesteps.

The available coupling algorithms can be distinguished

in two classes. If the particles are smaller than the lattice

Boltzmann grid spacing, they can be treated as point parti-

cles exchanging a Stokes drag force and eventually friction

forces with the fluid. This so-called friction coupling was

first introduced by Ahlrichs and Dünweg and became par-

ticularly popular for the simulation of polymers made of

bead-spring chains or compound particles [153–155].

If the hydrodynamic flow around the individual parti-

cles becomes important, particles are generally discretized

on the LBM lattice and at every discretization point, the

local momentum exchange between particle and fluid is

computed at every timestep. This method was pioneered

by Ladd and colleagues and is mostly used for suspension

flows [156–159]. The method has been applied to suspen-

sions of spherical and non-spherical particles by various

authors [160–162]. Recently, it has been extended to parti-

cle suspensions involving multiple fluid components [163–

166].

The coupling of particles to the LBM can also be

achieved through an immersed moving boundary (IMB)

scheme [167–169]. This sub-grid-scale condition maintains

the locality of LBM computations, addresses the momentum

discontinuity of binary bounce back schemes and provides

reasonable accuracy for obstacles mapped at low resolution.

To simulate the hydrodynamic interactions between solid

particles in suspensions, the lattice Boltzmann model has to

be modified to incorporate the boundary conditions imposed

on the fluid by the solid particles. Stationary solid objects

are introduced into the model by replacing the usual col-

lision rules at a specified set of boundary nodes by the

“link-bounce-back” collision rule [159]. When placed on

the lattice, the boundary surface cuts some of the links

between lattice nodes. The fluid particles moving along
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these links interact with the solid surface at boundary nodes

placed halfway along the links. Thus, a discrete represen-

tation of the surface is obtained, which becomes more and

more precise as the surface curvature gets smaller and which

is exact for surfaces parallel to lattice planes. Since the

velocities in the LBM are discrete, boundary conditions for

moving suspended particles cannot be implemented directly.

Instead, one modifies the density of returning particles in a

way that the momentum transferred to the solid is the same

as in the continuous velocity case. This is implemented by

introducing an additional term,

�b,i = 2ωci ρub · ci

c2
s

(97)

in the discrete Boltzmann equation [156], with ub being the

velocity of the boundary. To avoid redistributing fluid mass

from lattice nodes being covered or uncovered by solids,

one can allow interior fluid within closed surfaces. Its move-

ment relaxes to the movement of the solid body on much

shorter time scales than the characteristic hydrodynamic

interaction [156, 159, 170].

4 Implementation strategies

A number of features of the LBM facilitate straightforward

distribution on massively parallel systems [171]. In par-

ticular, the method is typically implemented on a regular,

orthogonal grid, and the collision operator and many bound-

ary implementations are local processes meaning that each

lattice node only requires information from its own loca-

tion to be relaxed. However, it should be noted that some

extensions of the method require the calculation of veloc-

ity and strain gradients from non-local information, and this

complicates parallelization somewhat.

Given the current state of computational hardware, in

particular the relative speed and capacity of processors and

memory, the LBM is a memory-bound numerical method.

This means that the time required to read and write data

from and to memory, not floating point operations, is the

critical bottleneck to performance. This has a number of

implications for the implementation of the method, be it on

shared-memory multicore nodes, distributed memory clus-

ters, or graphical processing units (GPUs). Each of these

parallelization strategies is discussed as follows.

4.1 Pore-list versus pore-matrix implementations

In typical lattice Boltzmann codes used for the simulation

of flow in porous media, the pore space and the solid nodes

are represented by an array including the distribution func-

tions fi and a Boolean variable to distinguish between a

pore and a matrix node (“pore-matrix” or “direct address-

ing” implementation). At every timestep, the loop covering

the domain includes the fluid and the solid nodes and if

statements are used to distinguish whether the collision and

streaming steps or boundary conditions need to be applied.

The advantage of this data structure is its straightforward

implementation. However, for the simulation of fluid flow

in porous media with low porosity, the drawbacks are high

memory demands and inefficient loops through the whole

simulation domain [39].

Alternatively, a data structure known as “pore-list” or

“indirect addressing” can be used [172]. Here, the array

comprising the lattice structure contains the position (pore-

position-list) and connectivity (pore-neighbor-list) of the

fluid nodes only. It can be generated from the original lat-

tice before the first timestep of the simulation. Then, only

loops through the list of pore nodes not comprising any if-

statements for the lattice Boltzmann algorithm are required.

The CPU time needed to generate and save the pore-list

data is comparable to the computational time required for

a single timestep of the usual lattice Boltzmann algorithm

based on the pore-matrix data structure. This alternative

approach is slightly more complicated to implement, but

allows highly efficient simulations of flows in geometries

with a low porosity. If the porosity becomes too large, how-

ever, the additional overhead due to the connection matrix

reduces the benefits and at some point renders the method

less efficient than a standard implementation. For represen-

tative 3D simulation codes, it was found that the transition

porosity where one of the two implementations becomes

more efficient is around 40% [39]. In addition, if the

microstructure of a porous medium is not static, but evolv-

ing due to processes like dissolution/precipitation [173], the

operation to generate and save the pore-list data needs to be

included in the time loop. In this case, the “pore-matrix” or

“direct addressing” implementation will be preferred.

Ma et al. [174] have proposed the SHIFT algorithm

where the distribution functions and the geometry of the

porous medium are stored in a single array following the

“pore-list” idea. Smart arrangement of the data in one-

dimensional arrays allows to implement highly optimized

and efficient codes making use of the vectorization capabil-

ities of modern CPUs.

4.2 Asynchronous parallelization on shared-memory,

multicore nodes

Historically, the parallel processing of numerical methods

utilized a distributed memory cluster as the underlying

hardware. In this approach, the computational domain is

decomposed into the same number of sub-domains as there

are nodes available in the cluster. A single sub-domain is

processed on each cluster node at each time step and when
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all sub-domains have been processed, global solution data

is synchronized.

The synchronization of solution data requires the creation

of, and communication between, domain ghost regions.

These regions correspond to neighboring sections of the

problem domain which are stored in memory on other

cluster nodes but are required on a cluster node for

the processing of its own sub-domain. In the LBM, this

is typically a ”layer” of grid points that encapsulates the

local sub-domain. As a consequence of Amdahls Law, this

can significantly degrade the scalability of the implementa-

tion.

Another challenge with distributed memory parallelism

can be sub-optimal load balancing, which also degrades

parallel efficiency, however some strategies to address this

problem are discussed in Section 4.3.

The issues of data communication and load balanc-

ing in parallel LBM implementations can be addressed

by employing shared-memory, multicore hardware, fine-

grained domain decomposition, and asynchronous task dis-

tribution. Access to a single memory address space removes

the need for ghost regions and the subsequent transfer of

data over comparatively slow node connections. Instead, all

data are accessible from either local caches or global mem-

ory. Access times for these data stores are many orders

of magnitude shorter than cross-machine communication

[175] and when used with an optimum cache-blocking strat-

egy can significantly reduce the latency associated with data

reads and writes.

Cache-blocking in this LBM implementation is opti-

mized by utilizing fine-grained domain decomposition.

Instead of partitioning the domain into one sub-domain per

core, a collection of significantly smaller sub-domains is

created. These sub-domains, or computational tasks, are

sized to fit in the low-level cache of a processing core, which

minimizes the time spent reading and writing data as a task

is processed. In the LBM, cubic nodal bundles are used to

realise fine-grained domain decomposition and on a multi-

core server with a core count on the order of 101 the number

of tasks could be in the order of 104.

Parallel distribution of computational tasks requires the

use of a coordination tool to manage them onto processing

cores in a load balanced way. Instead of using a traditional

scatter-gather approach, here the H-Dispatch distribution

model [176] is used because of the demonstrated advantages

for performance and memory efficiency. Rather than scatter

or push tasks from the domain data structure to threads, here

threads request tasks when free. H-Dispatch manages these

asynchronous requests using event handlers and distributes

tasks to the requesting threads accordingly. When all tasks

in the problem space have been dispatched and processed,

H-Dispatch identifies step completion and the process can

begin again. By using many more tasks than cores, and

events-based distribution of these tasks, the computational

workload of the numerical method is naturally balanced.

The shared-memory aspect of this implementation

requires the consideration of race conditions. Conveniently,

this can be addressed in the LBM by storing two copies

of the particle distribution functions at each node (which

is often done anyway) and using a pull rather than push

streaming operation. In the pull-collide sequence, incom-

ing functions are read from neighbor nodes (non-local read)

and collided, and then written to the future set of func-

tions for the current node (local write). On cache-sensitive

multicore hardware, this sequence of operations outper-

forms collide-push, which requires local reads and non-local

writes [175].

The benefit of optimized cache blocking is found by

varying the bundle size and measuring the speed-up of the

implementation. For example in Ref. [177] and for a sim-

ple 2003 problem, the optimal performance point (92 %

speed-up efficiency) was found at a side length of 20 [177].

Additionally, it was found that this optimal side length could

be applied to larger domains and still yield maximum speed-

up efficiency. This suggests that the optimum bundle size

for the LBM can be determined in an a priori fashion for

specific hardware.

4.3 Synchronous parallelization on distributed memory

clusters

A number of well established and highly scalable mul-

tiphase lattice Boltzmann implementations exist. A very

limited list of examples highlighting possible implementa-

tion differences includes Ludwig [178], LB3D [37], wal-

Berla [179], MUPHY [180], and Taxila LBM [181]. Inter-

estingly, the first four example implementations are able to

handle solid objects suspended in fluids. The first three are

even able to combine this with multiple fluid components

or phases by using different LBMs. All five codes demon-

strated excellent scaling on hundreds of thousand CPUs

available on state of the art supercomputers.

Ludwig is a feature-rich implementation which was

developed at the University of Edinburgh. It is based on

the free-energy model [182]. Recently, algorithms for inter-

acting colloidal particles, following the method given in

Section 3.6, have been added [165]. Similar in functionality,

but based on the ternary Shan-Chen multicomponent model

is lb3d, which was developed at University College London,

University of Stuttgart and Eindhoven University of Tech-

nology. In addition to simulating solid objects suspended in

multiphase flow, it has the ability to describe deformable

particles using an immersed boundary algorithm [163, 164,

183]. Both codes are matrix based and follow the classical

domain decomposition strategy utilizing the message pass-

ing interface (MPI), where every CPU core is responsible
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for a cuboid chunk of the total simulation volume. A refac-

tored version of lb3d with limited functionality that focuses

mainly on multiphase fluid simulation functionalities has

recently been released under the LGPL [184]. Taxila LBM is

an open source LBM code recently developed at LANL. It is

based on PETSc, Portable, Extensible Toolkit for Scientific

computation (http://www.mcs.anl.gov/petsc/). Taxila LBM

solves both single and multiphase fluid flows on regular lat-

tices in both two and three dimensions, and the multiphase

module is also based on the Shan-Chen model, but includes

many advances including higher order isotropy in the fluid–

fluid interfacial terms, an explicit forcing scheme, and

multiple relaxation times. Very recently, a 3D fully parallel

code based on the color gradient model [81], CFLBM, has

been developed jointly by UIUC and LANL. Like Ludwig

and LB3D, the CFLBM code is matrix based and follows

the classical domain decomposition strategy utilizing MPI.

CFLBM has been run on LANL’s Mustang and UIUC’s Blue

Waters using up to 32,768 cores and exhibited nearly ideal

scaling. MUPHY was developed by scientists in Rome, at

Harvard university and at NVidia and focuses on the simu-

lation of blood flow in complex geometries using a single

phase lattice Boltzmann solver. To model red blood cells,

interacting point-like particles have been introduced. The

code has demonstrated excellent performance on classical-

and GPU-based supercomputing platforms and was among

the finalists for several Gordon Bell prizes. In contrast to

Ludwig and lb3d, it uses indirect addressing in order to

accommodate the complex geometrical structures observed

in blood vessels in the most efficient way. The code from the

University of Erlangen, walBerla, combines a free surface

multiphase lattice Boltzmann implementation with a solver

for almost arbitrarily shaped solid objects. As an alternative

to direct or indirect addressing techniques, it is based on a

“patch and block design”, where the simulation domain is

divided into a hierarchical collection of sub-cuboids which

are the building blocks for massively parallel simulations

with load balancing [179].

Some implementation details relevant to massively par-

allel simulations using the LBM are given with lb3d as

an example. The software is written in Fortran 90 and

parallelized using MPI. To perform long-running simula-

tions on massively parallel architectures requires parallel

I/O strategies and checkpoint and restarts facilities. lb3d

uses the parallel HDF5 formats for I/O which has proven

to be highly robust and performant on many supercomput-

ing platforms worldwide. Recently, lb3d has been shown to

scale almost linearly on up to 262,144 cores on the Euro-

pean Blue Gene/P systems Jugene and Juqueen based at

the Jülich Supercomputing Centre in Germany [185]. How-

ever, to obtain such excellent scaling, some optimizations of

the code were required. The importance of these implemen-

tation details is depicted by strong scaling measurements

based on a system of 1 0242 × 2 048 lattice sites carrying

only one fluid species (Fig. 2a) and a similarly sized system

containing two fluid species and 4 112 895 uniformly dis-

tributed particles with a radius of five lattice units (Fig. 2b).

Initially, LB3D showed only low efficiency in strong scaling

beyond 65 536 cores of the BlueGene/P system. This prob-

lem could be related to a mismatch of the network topology

of the domain decomposition in the code and the net-

work actually employed for point-to-point communication.

The Blue Gene/P provides direct links only between direct

neighbors in a three-dimensional torus, so a mismatch can

cause severe performance losses. Allowing MPI to reorder

process ranks and manually choose a domain decomposi-

tion based on the known hardware topology, efficiency can

be brought close to ideal. See Fig. 2a for a comparison of

the speedup before and after this optimization. Systems con-

taining particles and two fluid species were known to slowly

degrade in parallel efficiency when the number of cores

was increased. This degradation was not visible for a pure

lattice Boltzmann system and could be attributed to a non-

parallelized loop over all particles in one of the subroutines

implementing the coupling of the colloidal particles and the

two fluids. Due to the low computational cost per iteration

Fig. 2 Strong scaling of lb3d

on a Blue Gene/P machine

before and after optimizations. a

relates to a system with only one

fluid component. b refers to a

system with two fluid species

and suspended particles (from

Ref. [185])
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compared to the overall coupling costs for colloids and flu-

ids, at smaller numbers of particles or CPU cores, this part

of the code was not recognized as a possible bottleneck. A

complete parallelization of the respective parts of the code

produced a nearly ideal speedup up to 262 144 cores also

for this system. Both strong scaling curves are depicted in

Fig. 2b.

In order to improve the accuracy and numerical stability

of lb3d with respect to the application to the simulation of

multiphase flows in porous media, recently a MRT collision

model was integrated with the software. While the MRT col-

lision algorithm is more complex than the BGK collision

scheme and can cause significant performance loss when

implemented naively, the increase in calculation cost can be

dramatically reduced. We take advantage of two properties

of the system to minimize the impact of the additional MRT

operations on the code performance. First, the symmetry of

the lattice allows prior calculation of the sum and differ-

ence of discrete velocities which are linear dependent, thus

saving at least half of the calculation steps [186]. Second,

the equilibrium stochastical moments can be expressed as

functions of the conserved properties density and velocity,

thus saving the transformation of the equilibrium distri-

butions [187]. As such, the performance penalty could be

reduced below 17 %, which is close to the minimal addi-

tional cost reported in [187]. Since in multiphase systems

the relative cost of the collision scheme is further reduced,

the use of the MRT scheme has even less impact on the per-

formance and for ternary amphiphilic simulations we find a

performance penalty of only 5.8 %.

4.4 Parallelization on general purpose GPU arrays

The introduction of application programming interfaces

such as CUDA, OpenCL, DirectCompute and the addition

of compute shaders in OpenGL has enabled implementa-

tion of numerical methods on graphics processing hardware.

When used for scientific computing, there are two primary

advantages of a GPU over a CPU. First, a GPU typically

has a far greater number of cores. The current generation

nVidia Tesla K20x has 2688 cores, while a high end Intel

Xeon E-2690v2 has only 10. Second, GPUs also have a

much higher memory bandwidth, with a theoretical max-

imum of 250 GB/s versus 59.7 GB/s for the Tesla and

Xeon, respectively. It is therefore reasonable to expect that

implementation of the LBM on a GPU architecture will

yield significant performance improvements when com-

pared with an equivalent multicore or cluster-based CPU

implementation.

As with many CPU implementations, GPU parallelism

requires the LBM domain to be decomposed into a num-

ber of equal sized blocks of lattice sites. The GPU hard-

ware is partitioned into streaming multiprocessors (SM),

each consisting of a number of cores. Each domain block is

assigned to a single SM, where the lattice sites are assigned

to a core and computed in parallel. The LBM computations

are implemented as a kernel function which is executed on

the GPU.

The performance benefits of using GPUs with the LBM

are well reported. Mawson & Revell’s implementation on

a single Tesla GPU achieved a peak performance of 1036

million lattice updates per second (MLUPS) [188]. Imple-

mentation of the method by Obrecht et. al. on a GPU cluster,

with an older generation of GPUs, yielded speeds in excess

of 8000 MLUPS [189]. The work detailed by these authors

reveals that writing an efficient kernel function is, however,

non-trivial. Indeed, a number of issues, such as branching

code, memory access and memory consumption, must be

considered when writing an efficient LBM kernel.

Branching code refers to the use of conditional state-

ments to direct the logic of an algorithm. When a condi-

tional statement (e.g. if statement) is executed on a CPU

only the valid branch of code will be computed. This is

not the case with a GPU. GPU’s are designed to be Same

Instruction Multiple Data machines. This means that all

cores in an SM must execute the same code which leads

to two possible outcomes. In the case that all cores eval-

uate the statement and require the same branch of the

conditional statement, only one branch is actually com-

puted. If some cores require the first branch of the statement,

and the rest require the second branch, then all cores exe-

cute both branches of the conditional statement. In the latter

case, the redundant branch is computed as a null pointer

operation.

There are a two situations where this branching problem

is particularly relevant to the implementation of a general

LBM code, namely the collision operator and boundary con-

ditions. It is common for a general code to implement a

variety of collision operators. However, the use of multiple

collision operators within a single model is uncommon. In

this instance, it is acceptable for the collision operator selec-

tion logic to appear within the kernel. As in this case, all

threads will only execute a single branch. The selection of

boundary conditions at a node is also done through condi-

tional logic. The naive approach to avoiding code branching

in this scenario is to simply use two separate kernels for

boundary and regular lattice sites. However, this approach

requires the development of more code, and the spatial

locality of lattice sites is not preserved in memory.

As was mentioned in Section 4.2, many LBM implemen-

tations use two data structures to store particle distribution

functions. This is not optimal when using GPU hardware,

as even the most recent Tesla GPUs are limited to 6 GB

of memory, which corresponds to approximately 34 mil-

lion lattice sites when using a D3Q19 lattice. Fortunately,

a number of approaches exist to remove the dual-lattice
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requirement. These include the Compressed Grid or Shift

algorithm proposed by Pohl et al. [175], the Swap algorithm

proposed by Latt [190], and the AA Pattern algorithm pro-

posed by Bailey et al. [191]. These approaches have been

reviewed by Wittmann et al. who found that of the algo-

rithms available, the AA Pattern algorithm proved to be the

most beneficial both in terms of memory consumption and

computational efficiency [192].

In order to achieve the maximum theoretical memory

bandwidth of a GPU, memory access must be coalesced. An

access pattern which is coalesced is one where, for double

precision, accesses fit into segments of 128 bytes result-

ing in threads that read data from the same segment of

the array. Various authors have presented methods to mit-

igate the impact of uncoalesced memory access. Toelke et

al. presented a method where the streaming operation was

split into two stages for a D2Q9 lattice, where variables

are streamed first in the X-direction, and subsequently in

the Y-direction [193]. Rinaldi et al. noted that uncoalesced

memory reads are faster than uncoalesced writes, so they

carried out propagation of the particle distribution functions

in the reading step [194]. Streaming on read is a straightfor-

ward approach that mitigates the effect of coalesced access

at no extra cost. However, recent work by Mawson & Revell

has shown that techniques like the one proposed by Toelke

et al. require extra processor registers, limiting the number

of lattice sites which may be computed in parallel. Mawson

& Revell found that, with the current generation of nVidia

Tesla chips, the bandwidth reduction due to uncoalesced

streaming in the LBM is at most 5 % [188].

Finally, a multi-GPU configuration can be useful when

either the memory consumption of a model exceeds the

available memory on a single GPU or more computational

power is required. For a code to exploit multiple GPUs,

another level of domain decomposition must be added in

which each GPU is used to compute a subdomain. To do

this, the storage strategy for lattice data must account for

communication between GPUs. The solution to managing

this process is found in the way in which data is marshalled

between nodes in a cluster. In this case, the CPU repre-

sents a master node, the GPUs then become the slave nodes.

Where the bandwidth of the PCIe x16 ports used to connect

the GPU is of a similar order of magnitude to that 14 data

rate InfiniBand connection at 15.4 GB/s. Though unlike an

InfiniBand connection, it is not currently possible for slave

nodes to access the memory of other slave nodes directly.

The best strategy for this is to include ghost nodes so that

race conditions are avoided during the streaming of particle

distribution functions across the subdomain boundary. The

master node, or CPU, is then used to manage data transfer

between devices.

5 Applications

In this section, the ability of the discussed multiphase mod-

els to capture the relevant physics of multiphase flow prob-

lems in porous media is demonstrated. This is undertaken

using baseline tests of two-dimensional flow in synthetic

porous media.

5.1 The color gradient model

In the current example, no-slip boundary conditions at solid

walls are implemented by a simple bounce-back rule [195].

The wettability of the solid walls can be imposed by assum-

ing that the solid wall is a mixture of two fluids, thus having

a certain value of the phase field [195, 196]. The interfacial

force term in Eq. 17 becomes dependent on the properties of

the neighboring solid lattice sites, resulting in a special case

of the wetting boundary condition. The assigned value of

the phase field at sites neighboring the wall sites can be used

to modify the static contact angle of the interface. Figures 3

and 4 give the time evolution of interface at Ca = 0.005

for drainage process with M = 1
10

and imbibition process

with M = 4 in a 2D pore network, consisting of a uniform

distribution of circular grains. Here, the capillary number

(Ca) relates viscous to capillary forces and is defined as

Ca = uinηin/σ , where uin and ηin are the mean velocity

and dynamic viscosity of the displacing fluid at the inlet,

respectively. The viscosity ratio, M , is defined as the ratio

of non-wetting fluid viscosity to the wetting fluid viscosity:

M = ηnw/ηw. In the drainage process, the non-wetting fluid

advances in a piston-like manner in the pore throats. It can

be clearly observed that there is one small blob of defend-

ing fluid trapped near the rear stagnant point for each solid

grain. Similar trapped blobs are also found at the front stag-

nant point for the first column of grains. These trapped blobs

of defending fluid are attributed to low flow velocity and

high pressure at the front and rear stagnant points, so that the

wetting fluid cannot be completely drained out before the

advancing interfaces of non-wetting fluid coalesce or touch

the surface of solid grains. However, the defending fluid is

completely drained out in the imbibition process, where the

interface advances in a more stable manner, and the solid

surface favors the invading fluid but repels the defending

fluid.

5.2 Inter-particle potential model

The inter-particle potential model was used extensively for

various multiphase flow problems, see Refs. [37, 43, 97,

98, 197–207], because of its simplicity and easy imple-

mentation. Pan et al. [197] used the MCMP inter-particle
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Fig. 3 (Color online) Time

evolution of non-wetting fluid

displacing the wetting fluid for

Ca = 5 × 10−3 and M = 1
10

at

timesteps: a 0; b 16,000;

c 34,000; d 48,000; e 60,000;

and f 74,000

potential model to simulate two-phase flow in a porous

medium comprised of a synthetic packing with a relatively

uniform distribution of spheres. They achieved good agree-

ment between the measured hysteretic capillary pressure

saturation relations and the lattice Boltzmann simulations

when comparing entry pressure, displacement slopes, irre-

ducible saturation, and residual entrapment. The hystere-

sis was also found by Sukop and Or [198] who adopted

Fig. 4 (Color online) Time

evolution of wetting fluid

displacing the non-wetting fluid

for Ca = 5×10−3 and M = 4 at

timesteps: a 0; b 8000; c 18,000;

d 26,000; e 38,000; and f 46,000
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the SCMP inter-particle potential model to simulate the

liquid-vapor distributions in a porous medium based on two-

dimensional imagery of a real soil. Porter et al. [201] further

emphasized the importance of the wetting-nonwetting inter-

facial area. They adopted the MCMP inter-particle potential

model to study the hysteresis in the relationship between

capillary pressure, saturation, and interfacial areas in a

three-dimensional glass bead porous medium obtained by

computed micro-tomographic (CMT) image data.

The inter-particle potential model has also been used

to determine relative permeabilities [199, 200, 204, 207].

Effects of capillary number, wettability, and viscosity ratio,

as well as the porous structures on the relative perme-

ability were investigated in detail. However, the original

inter-particle potential model suffers from some limitations,

including large spurious velocities in the vicinity of the

fluid-fluid interface, viscosity-dependent equilibrium den-

sity and interfacial tension, and numerical instability for

large viscosity or density ratios. In the SCMP model, the

kinematic viscosity is fixed, and the density ratio is limited

to the order of 10. In the MCMP model, the viscosity and

density ratios are typically restricted to no more than 5 and

3, respectively.

Figure 5 illustrates simulations of imbibition into a

pseudo-2D porous medium using a ternary fluid mixture

model as described in Section 3, Eqs. 29–31. The qualita-

tive effect of variation of different system parameters on the

stable configuration is being investigated. The system con-

sists of a 512×1280 lattice with randomly placed cylinders,

which assures a minimum required resolution of the small-

est pores. Re-coloring boundary conditions are applied at

the inlet and outlet so that fluid of one component cross-

ing the periodic boundary is added to the second component

when appearing on the other side of the system. The sur-

factant follows standard periodic boundary conditions. The

coupling parameters of the inter-particle potential model are

kept fixed at Gc = 0.1, Gk,s = −0.006 and Gs,s = −0.003.

Figure 5a shows a comparison of the stable density dis-

tributions of the displaced (oil) component after 500,000

timesteps. Here, the applied body force, which is directly

proportional to the pressure gradient, is in lattice units var-

ied between F = 2 · 10−4 (left) and F = 4 · 10−4 (right).

Fig. 5 Snapshots of fluid density fields after imbibition simulation

using an inter-particle potential binary (ternary) fluid model in a

pseudo-2d porous medium, varying different parameters. Figure 5a:

Comparison of stable density distributions of the displaced (oil) com-

ponent after 500,000 timesteps varying an applied body force (pressure

gradient) in lattice units between F = 2 · 10−4 and F = 4 · 10−4 in

a neutrally wetting system. Figure 5b: Comparison of stable density

distributions of the displaced (oil) component after 500,000 timesteps

varying the contact angle of the displaced component between � =

17◦ and � = 163◦, applying a constant body force of F = 4 ·
10−4. Figure 5c:Illustration of the surfactant component density field

after 100,000 timesteps. Left: Surfactant component density (left) vs.

displaced (oil) component density (right) injecting a surfactant con-

centration cS = 0.2 together with the displacing fluid into a neutrally

wetting system, applying a constant body force of F = 4 ·10−4. Right:

Surfactant component density field injecting a surfactant concentration

cS = 0.5 together with the displacing fluid into a neutrally wetting

system, applying a constant body force of F = 4 · 10−4
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No surfactant is present and a contact angle of � = 90◦

corresponding to neutral wetting is applied. Between the

considered values of forcing a transition from halted to

complete filling in the stable state of the system by the

injected (water) component is observed.

Again, Fig. 5b shows a comparison of the stable density

distributions of the displaced (oil) component after 500,000

timesteps. Here, however, the driving body force is kept

fixed at F = 4 · 10−4 and the contact angle of the displaced

(oil) component is varied between � = 17◦ and � = 163◦.

The strongly wetting case as depicted on the left reverts the

effect of stronger pressure and the system again becomes

stable in a partially filled state. As to be expected for the

strongly dewetting case shown on the right, the displaced

(oil) component is completely flushed out of the system.

Figure 5c contains simulation snapshots after 100,000

timesteps. The driving force and contact angle are kept con-

stant at F = 4 · 10−4 and � = 90◦, respectively. A

surfactant component is being added to the invading fluid

(water) component. On the left hand side for injecting a sur-

factant concentration cS = 0.2, concurrent density fields of

the surfactant component (left) and the displaced (oil) com-

ponent are plotted side by side. The surfactant is agglom-

erating at the interface as denoted by the dark red spots.

For this concentration, a relatively sharp interface is con-

served. On the contrary, for a concentration of the surfactant

component in the invading fluid of cS = 0.5, a transition to a

diffusive regime can be observed on the right hand side. It is

noteworthy that the interfacial width in the diffusive regime is

of the order of tens or even hundreds of lattice sites. In real life

conditions, this should still correspond to length scales of sev-

eral nanometres or tens of nanometres only, which depicts a

limitation of diffuse interface models for porous media flows.

These examples clearly demonstrate the ability of the

amphiphilic model to qualitatively study the effect of surfac-

tants on imbibition in porous media, which is of relevance

for enhanced oil recovery applications.

5.3 Free-energy model

It has been widely demonstrated that with the bounce-back

boundary condition at the solid walls, the SRT LBM pro-

duces viscosity-dependent permeability in porous media,

while the viscosity-independent solution can be produced

by MRT [208, 209]. This can be clearly seen in Fig. 6,

which plots the permeability as a function of viscosity

for the single-phase flow through a body-centered cubic

array of spheres. To produce viscosity-independent perme-

ability, we implement the free-energy model of potential

form using MRT with two independent relaxation times (i.e.

the two-relaxation-time algorithm [208, 209]). This model

is applied to simulate the less viscous non-wetting fluid

displacing the wetting fluid in a pore network with slightly
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Fig. 6 (Color online) Comparison of the permeability calculated

based on MRT and SRT models with various viscosities for single-

phase flow through a periodic body-centered cubic array of spheres,

whose porosity is ε = 0.394

irregular distribution of cylinder center (which is obtained

by adding randomly small perturbation to the regularly

distributed position). Figure 7 gives the displacement pro-

cesses for the periodic boundary conditions at the upper and

lower boundaries. Similar to the observations in the color

gradient model, we can clearly see some small blobs trapped

near the front sides for the first column of solid grains.

Also, the trapped small blobs can dissolve very quickly as

the simulations progress. Actually, the dissolution of small

droplets/bubbles is a typical phenomenon in many diffuse-

interface models (e.g. the phase-field or free-energy model).

The droplet dissolution is attributed to two factors. The first is

that a multiphase system is always evolving towards the direc-

tion of decreasing free energy in the free-energy model, and

the system with the droplets completely dissolved has a lower

free energy than the one with two-phase coexistence, so small

droplets are prone to dissolve [126]. The second is that the

Cahn-Hilliard equation can conserve the total mass of the sys-

tem but cannot conserve the mass for each component/fluid.

Several methods have been proposed for reducing the rate of

dissolution in some simple systems, but more efforts are still

required to obtain physically meaningful numerical results

in a large and complex porous media, where the slim fingers

may be dynamically evolving and sometimes unstable.

5.4 Mean-field theory model

The mean-field theory model has been implemented by

Premnath and Abraham [210] with the MRT algorithm in

order to achieve better numerical stability. Using this MRT

model, we also simulated a 3D stationary bubble in a liquid
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Fig. 7 (Color online) Time

evolution of less viscous

non-wetting fluid displacing

more viscous wetting fluid for

Ca = 5 × 10−4, M = 1/10 and

θ = 135◦ at timesteps (a) 0, (b)

200,000, (c) 400,000, (d)

800,000, (e) 1,100,000, and (f)

1,300,000 using MRT free

energy model of potential form

Fig. 8 (Color online) Time

evolution of a liquid droplet with

radius R = 10 in a stationary gas

phase. The size of computational

domain is 60 × 60 × 60. The

densities of liquid and gas are 1

and 0.25, and the relaxation

times for both fluids are taken

0.53. Other parameters can be

found in Ref. [210]
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Fig. 9 (Color online) Injection of a non-wetting gas into two parallel capillary tubes with the pressure difference �p of (a) 4×10−5, (b) 6×10−5,

and (c) 8 × 10−5. The capillary pressure is Pc1
= 7.1 × 10−5 for the upper tube and Pc2

= 4.7 × 10−5 for the lower tube (reproduced from

Ref. [144])

domain with periodic boundary conditions applied at all

the boundaries. When using the same parameters as given

in [210], we found that good results can be obtained

without bubble dissolution. However, as the bubble size is

decreased, it can be observed that the bubble can quickly

dissolve, which is shown in Fig. 8. A fast dissolution is dis-

astrous for obtaining reliable simulation results. Fakhari and

Rahimian [211] also noticed the dissolution problem in their

two-dimensional axisymmetric simulations, and they sug-

gested to take a = 12.75RT , which can effectively reduce

diffusion of different phases into each other. However, we

found that this improvement is not very effective in 3D

stationary bubble tests.
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Fig. 10 (Color online) log Ca∗ − log M phase diagram indicating the

fluid displacement patterns and the locations of the numerical sim-

ulations given by Liu et al. [144] (represented by discrete symbols)

for drainage displacement, where the capillary number Ca∗ is defined

by Ca∗ = uinηin

σ cos(θ)
. The stability zones bounded by black dash-dot-

dotted, black dashed, and pink solid lines, are obtained by Lenormand

et al. [212], Zhang et al.[213], and the simulations of Liu et al.,

respectively (reproduced from Ref. [144])

5.5 Stabilized diffuse-interface model

Here, we demonstrate that the stabilized diffuse-interface

model is most suitable to simulate flow problems with

high density ratio. No-slip boundary conditions are applied

at solid walls using the bounce-back scheme [88]. For a

straight solid wall, the method of Lee and Liu [88] can

be employed to impose the wetting boundary condition.

Recently, a wetting boundary treatment was proposed for

concave and convex corners, which can be extended to more

complicated geometries with curved boundaries represented

by a staircase approximation [144]. With the proposed wet-

ting boundary treatment, Liu et al. [144] have simulated the

injection of a non-wetting gas through two parallel capil-

lary tubes (the widths of the upper and lower capillaries are

r1 and r2, and r1 < r2, leading to the capillary pressure

pc1 > pc2.) at several different �p, where �p is the pres-

sure difference between the inlet and outlet. As expected,

the findings were that when �p is smaller than pc2 (Fig. 9a),

the invading gas cannot enter both capillary tubes, when

�p is between pc2 and pc1 (Fig. 9b), the gas only flows

into the large capillary tube, and when the pressure differ-

ence is increased to �p > pc1 (Fig. 9c), the gas flows into

both capillary tubes, but the displacement is much faster

in the large capillary tube. This displacement behaviour

is consistent with the principle of pore-network simula-

tors [212], which suggests that this HDR model is able to

capture capillary effects and reproduce correct displacement

behaviour. The stabilized diffuse-interface model was also

used to simulate gas displacement of liquid in a homoge-

nous two-dimensional pore network consisting of uniformly

spaced square obstructions. The effect of capillary number,

viscosity ratio, surface wettability, and Bond number was

studied systematically. Similar to previous experimental

observations [212], three different regimes, namely stable

displacement, capillary fingering, and viscous fingering,

were identified in the drainage displacement, and all of them

are strongly dependent upon the capillary number, viscosity

ratio, and Bond number. The simulation results shown in the
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a b

c d

Fig. 11 Time averaged steady state particle trajectories (blue lines) in

a porous medium made by randomly placed cylinders (green circles).

Between each pair of neighbor cylinders a colored square is located

showing the probability of a particle to flow through. The radius of the

particles rp is varied between zero (tracers) and 2.6

two-dimensional phase diagram (see Fig. 10) denote that the

viscous fingering regime covers a region markedly different

from those obtained in previous numerical and experimental

studies [212, 213]. The difference is because the boundaries

of the regimes in the phase diagram are strongly dependent

on the configuration of the pore network, and also upon 3D

Fig. 12 Histogram of the

particle positions at the inlet and

outlet plane of the model porous

medium for tracers and massive

particles of radius rp = 1.6,

rp = 2.1, and 2.6, respectively

a b

c d
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effects, which are neglected in 2D simulations but can play a

non-trivial role for determining the displacement behaviour

in micromodel laboratory experiments.

5.6 Particle suspensions

Particle suspensions in porous media are relevant in many

processes such as fines migration [214, 215], sand libera-

tion [216], catalysis, heap-leaching, filtration, fertilization,

and contaminant spreading in the subsoil. In these applica-

tions, relevant questions involve the possibility of sealing

of porous media, segregation, or the formation of parti-

cle clusters and their influence on the transport properties

inside the porous structure. While for some applications,

one might like to optimize a porous medium so as to allow

almost all particles to pass (e.g. reactors and catalysts), other

applications demand a perfect trapping of all particles (e.g.

filters).

Coupled lattice Boltzmann and discrete ele-

ment/molecular dynamics algorithms are a powerful tool to

simulate such systems since they leverage the strengths of

two numerical algorithms. As demonstrated in the previous

sections, the LBM is well suited to describe (multiphase)

fluid flow in complex geometries. Particle-based methods,

on the other hand, allow the description of interacting

particles by solving Newton’s equations of motion. Here,

we limit ourselves to non-interacting point-wise particles

(tracers) and massive spherical particles which only inter-

act through hydrodynamic and Hertz forces in order to

mimic hard spheres. The massive particles have the same

mass density as the fluid. However, this is not a general

restriction of the algorithm. Electrostatic, van der Waals,

magnetic, or any other kind of interactions can be used

in the same way as in classical molecular dynamics. We

also ignore the effect of diffusion on tracer particles which

could be taken care of by adding a diffusive term [217].

Our system of interest is again a pseudo-2D porous

medium made of randomly placed cylinders as shown in

Fig. 11. The system size is 256 × 640 and the fluid is

driven using pressure boundary conditions in x1 direction.

Particles leaving the simulation domain at the outlet in x1

direction re-enter at the inlet, but at a randomly chosen x2

position. All other boundaries are periodic. These particles

only interact with walls by means of lubrication forces and

a very short range repulsive force. When the simulation has

reached a steady state, we record the trajectories of 1000

tracer particles or 100 massive particles being transported

by the flow. Figures 11a to 11d depict these trajectories for

tracers and particles with radius, rp = 1.6, 2.1, and 2.6,

respectively. It can be clearly seen that even for tracer par-

ticles preferable paths exists. This is due to high local flow

velocities which have their origin in the particular arrange-

ment of the cylinders. When increasing the particle radius,

the number of preferable paths reduces for several reasons.

First, particles with an extended size are only able to pass

through pores which are larger than the particle diameter.

Second, particles might block small pores rendering the area

behind it practically inaccessible for all further particles

flowing in. This effectively leads to a dynamic rearrange-

ment of the flow field and based on that the preferable paths

the particles tend to follow will change as well.

This explanation is underlined by Figs. 12 and 13.

Figure 12 depicts histograms of x2 positions where particles

enter at the inlet (randomly chosen) and where they leave the

system at the outlet. Interestingly, the tracers and the small

particles with rp = 1.6 show a similar number of preferred

outlet positions. However, these are differently distributed

because the massive particles also influence the flow field

—even though they are sufficiently small to pass almost all

pore throats. The histogram for the largest particles with

rp = 2.6 shows that only three possible percolating paths

seem to be accessible, while all others include pore throats

which are smaller than the particle diameter.

By averaging over all particles i, the recorded trajecto-

ries can be used to compute the mean square displacement

mqd(t) =
〈

(ri(t) − ri(t = 0))2
〉

i,t
. mqd(t) is shown for the

different particle species in Fig. 13. It can be concluded

that small massive particles can be transported through

the porous medium almost as efficiently as tracers—even

though they follow different preferable paths as demon-

strated by the histograms in Fig. 12. For larger particles,

however, the probability that some of them get stuck in

small pores grows leading to a substantial reduction of the

mean square displacement.

Fig. 13 Mean square displacement of the particles inside the porous

medium for different particle sizes
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Table 1 A summary of the capabilities of several lattice Boltzmann multiphase models

Models

Inter-particle potential Color Free-energy

Interfacial tension Static bubble test can be given can be given

is required directly directly

Spurious currents large medium small

Dissolution for tiny small very small large

bubbles/droplets

Density ratio 1000† 1000∗ 1

Kinematic viscosity 1000‡ 1000 up to 8

ratio

Computing cost ”average” ”average” ”average”

Models

Mean-field theory Stabilized diffuse-interface

Interfacial tension static bubble can be given

test is required directly

Spurious currents medium very small

Dissolution for tiny very large medium

bubbles/droplets

Density ratio up to around 15 1000

Kinematic viscosity unknown unknown

ratio

Computing cost greater large∗∗

†
Achieved in static bubble test with both SCMP [111] and MCMP [121] models using equations of state different from the original Shan-Chen

model.
‡
Achieved in static bubble test and two-phase cocurrent flow between two parallel plates with the MCMP model, using higher order isotropy in

the fluid-fluid interfacial terms, explicit forcing scheme, and multiple relaxation times [120].
∗

Achieved in static bubble test using the color gradient model presented in [81].
∗∗

The normal direction at each boundary node should be identified, and high-order approximations to derivatives are needed.

6 Conclusion

In this article, we provided a comprehensive overview and

literature review on lattice Boltzmann modelling of multi-

phase flow with a particular focus on porous media appli-

cations. We introduced several algorithmic extensions of

the LBM to describe multiple fluid phases or solid phases

suspended in fluid. Their individual advantages and disad-

vantages were discussed based on simple example cases.

To guide readers to choose appropriately among the dif-

ferent LBM formulations for multiple fluid phases reviewed

above, Table 1 gives a brief summary of their capabili-

ties which are examined through a series of comparisons,

including (i) the ability of modelling the interfacial ten-

sion, which can be given directly in the model or should

be obtained numerically through the static bubble test based

on the Laplace’s law, (ii) the magnitude of maximum spuri-

ous velocities in the static bubble test, (iii) dissolution rate

for small droplets/bubbles, (iv) the highest density ratio that

can be achieved, (v) the highest kinematic viscosity ratio

that can be achieved, and (vi) the computing cost. As can be

seen from Table 1, each lattice Boltzmann multiphase model

has its own advantages and limitations, and it is not possi-

ble to state that one model is definitely preferred to another.

However, it will be beneficial to be aware of and carefully

consider the following points, especially when the LBM

is chosen for pore-scale simulation of multiphase flows in

porous media:

(1) The stabilized diffuse-interface model can almost

eliminate the spurious velocities to round-off error,

free-energy, and color gradient models produce larger

spurious velocities and the inter-particle potential

model has largest spurious velocities;

(2) Small droplets/bubbles are expected to dissolve for

stabilized diffuse-interface model, free-energy model

and mean-field theory model, and the dissolution rate

is fastest for the mean-field model;
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(3) The stabilized diffuse-interface model is most suit-

able to simulate flow problems with high density ratio,

while the color gradient model is most suitable to

simulate flows with moderate/high viscosity ratio;

(4) The free-energy model of potential form can produce

smaller spurious velocities than its stress/pressure

form, thus leading to the correct equilibrium contact

angles when the binary fluids have different viscosi-

ties.
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66. Ginzburg, I., dHumiéres, D., Kuzmin, A.: J. Stat. Phys. 139,

1090 (2010)

67. Ladd, A.J.C.: Phys. Rev. Lett. 70, 1339 (1993)

68. Dünweg, B., Schiller, U., Ladd, A.: Phys. Rev. E 76 (2007)

69. Gross, M., Adhikari, R., Cates, M.E., Varnik, F.: Phys. Rev. E

82, 056714 (2010)

70. Kaehler, G., Wagner, A.J.: Phys. Rev. E 87, 063310 (2013)

71. Shan, X., Yuan, X.F., Chen, H.: J. Fluid Mech. 550, 413 (2006)

72. Dubois, F., Lallemand, P.: J. Stat. Mech. 2009, P06006 (2009)

73. Cornubert, R., d’Humires, D., Levermore, D.: Physica D 47, 241

(1991)

74. Chen, S., Doolen, G.D.: Annu. Rev. Fluid Mech. 30, 329 (1998)

75. Zou, Q., He, X.: Phys. Fluids 9, 1591 (1997)
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