001     829362
005     20220930130120.0
024 7 _ |a 10.3390/molecules22040655
|2 doi
024 7 _ |a 2128/14606
|2 Handle
024 7 _ |a WOS:000404517800153
|2 WOS
024 7 _ |a altmetric:20586334
|2 altmetric
024 7 _ |a pmid:28422069
|2 pmid
037 _ _ |a FZJ-2017-03077
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Owen, Michael
|0 P:(DE-Juel1)161571
|b 0
|e Corresponding author
245 _ _ |a Protein Stability and Unfolding Following Glycine Radical Formation
260 _ _ |a Basel
|c 2017
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1497351724_20567
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Glycine (Gly) residues are particularly susceptible to hydrogen abstraction; which results in the formation of the capto-dative stabilized Cα-centered Gly radical (GLR) on the protein backbone. We examined the effect of GLR formation on the structure of the Trp cage; tryptophan zipper; and the villin headpiece; three fast-folding and stable miniproteins; using all-atom (OPLS-AA) molecular dynamics simulations. Radicalization changes the conformation of the GLR residue and affects both neighboring residues but did not affect the stability of the Trp zipper. The stability of helices away from the radical center in villin were also affected by radicalization; and GLR in place of Gly15 caused the Trp cage to unfold within 1 µs. These results provide new evidence on the destabilizing effects of protein oxidation by reactive oxygen species.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
700 1 _ |a Csizmadia, Imre G.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Viskolcz, Béla
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 3
770 _ _ |a Biomolecular Simulations
773 _ _ |a 10.3390/molecules22040655
|0 PERI:(DE-600)2008644-1
|n 4
|p 655
|t Molecules
|v 22
|y 2017
|x 1420-3049
856 4 _ |u https://juser.fz-juelich.de/record/829362/files/Protein%20Stability%20and%20Unfolding%20Following%20Glycine%20Radical%20Formation.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829362/files/Protein%20Stability%20and%20Unfolding%20Following%20Glycine%20Radical%20Formation.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829362/files/Protein%20Stability%20and%20Unfolding%20Following%20Glycine%20Radical%20Formation.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829362/files/Protein%20Stability%20and%20Unfolding%20Following%20Glycine%20Radical%20Formation.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829362/files/Protein%20Stability%20and%20Unfolding%20Following%20Glycine%20Radical%20Formation.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829362/files/Protein%20Stability%20and%20Unfolding%20Following%20Glycine%20Radical%20Formation.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:829362
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161571
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132024
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOLECULES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21