000829374 001__ 829374
000829374 005__ 20240625095126.0
000829374 0247_ $$2doi$$a10.3390/biomedicines5010009
000829374 0247_ $$2Handle$$a2128/14870
000829374 0247_ $$2WOS$$aWOS:000398714600009
000829374 0247_ $$2altmetric$$aaltmetric:20576294
000829374 0247_ $$2pmid$$apmid:28536352
000829374 037__ $$aFZJ-2017-03087
000829374 041__ $$aEnglish
000829374 082__ $$a610
000829374 1001_ $$0P:(DE-Juel1)169975$$aBochicchio, Anna$$b0
000829374 245__ $$aDesigning the Sniper: Improving Targeted Human Cytolytic Fusion Proteins for Anti-Cancer Therapy via Molecular Simulation
000829374 260__ $$aBasel$$bMDPI$$c2017
000829374 3367_ $$2DRIVER$$aarticle
000829374 3367_ $$2DataCite$$aOutput Types/Journal article
000829374 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1499671017_7964
000829374 3367_ $$2BibTeX$$aARTICLE
000829374 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829374 3367_ $$00$$2EndNote$$aJournal Article
000829374 520__ $$aTargeted human cytolytic fusion proteins (hCFPs) are humanized immunotoxins for selective treatment of different diseases including cancer. They are composed of a ligand specifically binding to target cells genetically linked to a human apoptosis-inducing enzyme. hCFPs target cancer cells via an antibody or derivative (scFv) specifically binding to e.g., tumor associated antigens (TAAs). After internalization and translocation of the enzyme from endocytosed endosomes, the human enzymes introduced into the cytosol are efficiently inducing apoptosis. Under in vivo conditions such enzymes are subject to tight regulation by native inhibitors in order to prevent inappropriate induction of cell death in healthy cells. Tumor cells are known to upregulate these inhibitors as a survival mechanism resulting in escape of malignant cells from elimination by immune effector cells. Cytosolic inhibitors of Granzyme B and Angiogenin (Serpin P9 and RNH1, respectively), reduce the efficacy of hCFPs with these enzymes as effector domains, requiring detrimentally high doses in order to saturate inhibitor binding and rescue cytolytic activity. Variants of Granzyme B and Angiogenin might feature reduced affinity for their respective inhibitors, while retaining or even enhancing their catalytic activity. A powerful tool to design hCFPs mutants with improved potency is given by in silico methods. These include molecular dynamics (MD) simulations and enhanced sampling methods (ESM). MD and ESM allow predicting the enzyme-protein inhibitor binding stability and the associated conformational changes, provided that structural information is available. Such “high-resolution” detailed description enables the elucidation of interaction domains and the identification of sites where particular point mutations may modify those interactions. This review discusses recent advances in the use of MD and ESM for hCFP development from the viewpoints of scientists involved in both fields.
000829374 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000829374 588__ $$aDataset connected to CrossRef
000829374 7001_ $$0P:(DE-HGF)0$$aJordaan, Sandra$$b1
000829374 7001_ $$0P:(DE-HGF)0$$aLosasso, Valeria$$b2
000829374 7001_ $$0P:(DE-HGF)0$$aChetty, Shivan$$b3
000829374 7001_ $$0P:(DE-Juel1)157186$$aCasasnovas Perera, Rodrigo$$b4
000829374 7001_ $$0P:(DE-Juel1)146009$$aIppoliti, Emiliano$$b5
000829374 7001_ $$0P:(DE-HGF)0$$aBarth, Stefan$$b6$$eCorresponding author
000829374 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b7$$eCorresponding author
000829374 773__ $$0PERI:(DE-600)2720867-9$$a10.3390/biomedicines5010009$$gVol. 5, no. 1, p. 9 -$$n1$$p9$$tBiomedicines$$v5$$x2227-9059$$y2017
000829374 8564_ $$uhttps://juser.fz-juelich.de/record/829374/files/biomedicines-05-00009-v2.pdf$$yOpenAccess
000829374 8564_ $$uhttps://juser.fz-juelich.de/record/829374/files/biomedicines-05-00009-v2.gif?subformat=icon$$xicon$$yOpenAccess
000829374 8564_ $$uhttps://juser.fz-juelich.de/record/829374/files/biomedicines-05-00009-v2.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000829374 8564_ $$uhttps://juser.fz-juelich.de/record/829374/files/biomedicines-05-00009-v2.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000829374 8564_ $$uhttps://juser.fz-juelich.de/record/829374/files/biomedicines-05-00009-v2.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000829374 8564_ $$uhttps://juser.fz-juelich.de/record/829374/files/biomedicines-05-00009-v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000829374 909CO $$ooai:juser.fz-juelich.de:829374$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000829374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169975$$aForschungszentrum Jülich$$b0$$kFZJ
000829374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157186$$aForschungszentrum Jülich$$b4$$kFZJ
000829374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)146009$$aForschungszentrum Jülich$$b5$$kFZJ
000829374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b7$$kFZJ
000829374 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000829374 9141_ $$y2017
000829374 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829374 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000829374 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000829374 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000829374 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000829374 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000829374 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829374 920__ $$lyes
000829374 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000829374 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000829374 980__ $$ajournal
000829374 980__ $$aVDB
000829374 980__ $$aUNRESTRICTED
000829374 980__ $$aI:(DE-Juel1)IAS-5-20120330
000829374 980__ $$aI:(DE-Juel1)INM-9-20140121
000829374 9801_ $$aFullTexts