Home > Publications database > Structural heterogeneity of the $μ$-opioid receptor’s conformational ensemble in the apo state > print |
001 | 829376 | ||
005 | 20240625095127.0 | ||
024 | 7 | _ | |a 10.1038/srep45761 |2 doi |
024 | 7 | _ | |a 2128/14205 |2 Handle |
024 | 7 | _ | |a WOS:000398321200001 |2 WOS |
024 | 7 | _ | |a altmetric:18485991 |2 altmetric |
024 | 7 | _ | |a pmid:28368046 |2 pmid |
037 | _ | _ | |a FZJ-2017-03089 |
041 | _ | _ | |a English |
082 | _ | _ | |a 000 |
100 | 1 | _ | |a Sena, Diniz M. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Structural heterogeneity of the $μ$-opioid receptor’s conformational ensemble in the apo state |
260 | _ | _ | |a London |c 2017 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1492516563_26745 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a G-protein coupled receptors (GPCRs) are the largest and most pharmaceutically relevant family of membrane proteins. Here, fully unbiased, enhanced sampling simulations of a constitutively active mutant (CAM) of a class A GPCR, the μ-opioid receptor (μOR), demonstrates repeated transitions between the inactive (IS) and active-like (AS-L) states. The interconversion features typical activation/inactivation patterns involving established conformational rearrangements of conserved residues. By contrast, wild-type μOR remains in IS during the same course of simulation, consistent with the low basal activity of the protein. The simulations point to an important role of residue W2936.48 at the “toggle switch” in the mutation-induced constitutive activation. Such role has been already observed for other CAMs of class A GPCRs. We also find a significantly populated intermediate state, rather similar to IS. Based on the remarkable accord between simulations and experiments, we suggest here that this state, which has escaped so far experimental characterization, might constitute an early step in the activation process of the apo μOR CAM. |
536 | _ | _ | |a 572 - (Dys-)function and Plasticity (POF3-572) |0 G:(DE-HGF)POF3-572 |c POF3-572 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Cong, Xiaojing |0 P:(DE-HGF)0 |b 1 |e Corresponding author |
700 | 1 | _ | |a Giorgetti, Alejandro |0 P:(DE-Juel1)165199 |b 2 |u fzj |
700 | 1 | _ | |a Kless, Achim |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Carloni, Paolo |0 P:(DE-Juel1)145614 |b 4 |e Corresponding author |
773 | _ | _ | |a 10.1038/srep45761 |g Vol. 8, p. 45761 - |0 PERI:(DE-600)2615211-3 |p 45761 |t Scientific reports |v 7 |y 2017 |x 2045-2322 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/829376/files/srep45761.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/829376/files/srep45761.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/829376/files/srep45761.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/829376/files/srep45761.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/829376/files/srep45761.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/829376/files/srep45761.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:829376 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)145614 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)145614 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-572 |2 G:(DE-HGF)POF3-500 |v (Dys-)function and Plasticity |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2015 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b SCI REP-UK : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-5-20120330 |k IAS-5 |l Computational Biomedicine |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|