001     829376
005     20240625095127.0
024 7 _ |a 10.1038/srep45761
|2 doi
024 7 _ |a 2128/14205
|2 Handle
024 7 _ |a WOS:000398321200001
|2 WOS
024 7 _ |a altmetric:18485991
|2 altmetric
024 7 _ |a pmid:28368046
|2 pmid
037 _ _ |a FZJ-2017-03089
041 _ _ |a English
082 _ _ |a 000
100 1 _ |a Sena, Diniz M.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Structural heterogeneity of the $μ$-opioid receptor’s conformational ensemble in the apo state
260 _ _ |a London
|c 2017
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1492516563_26745
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a G-protein coupled receptors (GPCRs) are the largest and most pharmaceutically relevant family of membrane proteins. Here, fully unbiased, enhanced sampling simulations of a constitutively active mutant (CAM) of a class A GPCR, the μ-opioid receptor (μOR), demonstrates repeated transitions between the inactive (IS) and active-like (AS-L) states. The interconversion features typical activation/inactivation patterns involving established conformational rearrangements of conserved residues. By contrast, wild-type μOR remains in IS during the same course of simulation, consistent with the low basal activity of the protein. The simulations point to an important role of residue W2936.48 at the “toggle switch” in the mutation-induced constitutive activation. Such role has been already observed for other CAMs of class A GPCRs. We also find a significantly populated intermediate state, rather similar to IS. Based on the remarkable accord between simulations and experiments, we suggest here that this state, which has escaped so far experimental characterization, might constitute an early step in the activation process of the apo μOR CAM.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cong, Xiaojing
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Giorgetti, Alejandro
|0 P:(DE-Juel1)165199
|b 2
|u fzj
700 1 _ |a Kless, Achim
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 4
|e Corresponding author
773 _ _ |a 10.1038/srep45761
|g Vol. 8, p. 45761 -
|0 PERI:(DE-600)2615211-3
|p 45761
|t Scientific reports
|v 7
|y 2017
|x 2045-2322
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/829376/files/srep45761.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/829376/files/srep45761.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/829376/files/srep45761.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/829376/files/srep45761.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/829376/files/srep45761.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/829376/files/srep45761.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:829376
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145614
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145614
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21