001     829380
005     20240625095127.0
024 7 _ |a 10.1007/s00262-015-1763-8
|2 doi
024 7 _ |a 0340-7004
|2 ISSN
024 7 _ |a 1432-0851
|2 ISSN
024 7 _ |a WOS:000365176600008
|2 WOS
024 7 _ |a altmetric:4633258
|2 altmetric
024 7 _ |a pmid:26472728
|2 pmid
037 _ _ |a FZJ-2017-03093
082 _ _ |a 610
100 1 _ |a Cremer, Christian
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Novel angiogenin mutants with increased cytotoxicity enhance the depletion of pro-inflammatory macrophages and leukemia cells ex vivo
260 _ _ |a Berlin
|c 2015
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1493015841_17726
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Immunotoxins are fusion proteins that combine a targeting component such as an antibody fragment or ligand with a cytotoxic effector component that induces apoptosis in specific cell populations displaying the corresponding antigen or receptor. Human cytolytic fusion proteins (hCFPs) are less immunogenic than conventional immunotoxins because they contain human pro-apoptotic enzymes as effectors. However, one drawback of hCFPs is that target cells can protect themselves by expressing endogenous inhibitor proteins. Inhibitor-resistant enzyme mutants that maintain their cytotoxic activity are therefore promising effector domain candidates. We recently developed potent variants of the human ribonuclease angiogenin (Ang) that were either more active than the wild-type enzyme or less susceptible to inhibition because of their lower affinity for the ribonuclease inhibitor RNH1. However, combining the mutations was unsuccessful because although the enzyme retained its higher activity, its susceptibility to RNH1 reverted to wild-type levels. We therefore used molecular dynamic simulations to determine, at the atomic level, why the affinity for RNH1 reverted, and we developed strategies based on the introduction of further mutations to once again reduce the affinity of Ang for RNH1 while retaining its enhanced activity. We were able to generate a novel Ang variant with remarkable in vitro cytotoxicity against HL-60 cells and pro-inflammatory macrophages. We also demonstrated the pro-apoptotic potential of Ang-based hCFPs on cells freshly isolated from leukemia patients.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Braun, Hanna
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mladenov, Radoslav
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schenke, Lea
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Cong, Xiaojing
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jost, Edgar
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Brümmendorf, Tim H.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Fischer, Rainer
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 8
|u fzj
700 1 _ |a Barth, Stefan
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Nachreiner, Thomas
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.1007/s00262-015-1763-8
|g Vol. 64, no. 12, p. 1575 - 1586
|0 PERI:(DE-600)1458489-x
|n 12
|p 1575 - 1586
|t Cancer immunology immunotherapy
|v 64
|y 2015
|x 1432-0851
856 4 _ |u https://juser.fz-juelich.de/record/829380/files/art_10.1007_s00262-015-1763-8.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829380/files/art_10.1007_s00262-015-1763-8.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829380/files/art_10.1007_s00262-015-1763-8.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829380/files/art_10.1007_s00262-015-1763-8.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829380/files/art_10.1007_s00262-015-1763-8.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829380/files/art_10.1007_s00262-015-1763-8.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:829380
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)145614
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER IMMUNOL IMMUN : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)GRS-20100316
|k GRS Jülich ; German Research School for Simulation Sciences
|l GRS
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)GRS-20100316
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-9-20140121


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21