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The test particle Monte-Carlo models for neutral particles are often used in the tokamak edge

modelling codes. The drawback of these models is that the self-consistent solution suffers from ran-

dom error introduced by the statistical method. A particular case where the onset of nonphysical

solutions can be clearly identified is the violation of the global particle balance due to non-

converged residuals. There are techniques that can reduce the residuals—such as internal iterations

in the code B2-EIRENE—but they may pose severe restrictions on the time-step and slow down

the computations. Numerical diagnostics described in this paper can be used to unambiguously

identify when the too large error in the global particle balance is due to finite-volume residuals, and

their reduction is absolutely necessary. Algorithms that reduce the error while allowing large time-

step are also discussed. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4980858]

I. INTRODUCTION

A combination of a 2D finite-volume plasma transport

code with a kinetic Monte-Carlo model for neutral particles

is typically applied for numerical modelling of the tokamak

edge and divertor plasmas. A well known example of such

modelling tool is the code package B2-EIRENE1,2 (SOLPS)

widely used in the field. The Monte-Carlo method allows

physically accurate description of atomic and molecular

kinetics in complex geometries but has a disadvantage of

random error—statistical noise in the calculated quantity.

There were always concerns that this statistical noise can

have detrimental impacts on the coupled solution.3

In the present paper, one specific noise related issue that

can lead to pathological solutions is addressed—violation of

the global particle balance. It is shown that the error in the

steady-state particle balance can be presented as a sum of

three terms. Those are the operator splitting error, residual of

the fluid solver, and the time-derivative. Whereas the first

term can be effectively reduced by the source re-scaling, the

reduction of residuals may require an iterative solution of the

discretized fluid equations after each call of the Monte-Carlo

model. This can, in turn, pose severe restrictions on the time-

step and lead to a very long overall run-time. For example,

in the ITER modelling studies,4 one model run could take

several months of wall-clock time. Special diagnostics for

monitoring of the particle balance allow us to clearly identify

the cases when reduction of residuals is absolutely necessary,

and the corresponding measures must be taken.

This paper presents in condensed form the most impor-

tant findings from the dedicated study of the SOLPS code.5

Prototypes of the numerical diagnostics were implemented

and tested in the code SOLPS4.3 which is the legacy version

of B2-EIRENE used in the past for the ITER design model-

ling.4 The approach itself is thought to be applicable to any

finite-volume edge code. The numerical convergence is ana-

lyzed here only in terms of the global balances and criteria

of the (quasi-)steady-state. It is not attempted to use the

stricter methods of analysis proposed recently for the combi-

nation of fluid and Monte-Carlo models in Ref. 7. Only

steady-state solutions are considered.

The rest of the paper is organized as follows. In Sec. II,

a finite-volume fluid code with source terms calculated by

Monte-Carlo is described in general terms. In Section III, the

diagnostics for monitoring of the particle balance are intro-

duced. An example of calculations with different error

(residual) reduction techniques is discussed in Section IV.

Further methods that can be used to reduce the residuals and

the associated error in the particle balance are outlined in

Section V. The last section summaries the conclusions.

II. COUPLING OF A FINITE-VOLUME
AND A MONTE-CARLO MODEL

Here, only minimal information about the numerical

procedure of the code B2-EIRENE is given, which is

required for the subsequent discussion. The plasma transport

code B28,9 solves a set of 2D (axi-symmetric) equations for

particle conservation, parallel momentum balance, and

energy of electrons and ions. The full set of equations can be

found in Ref. 9, Chapter 2. The computational domain com-

prises the scrape-off-layer (SOL) region outside of the 1st

magnetic separatrix, and the edge of the core plasma inside

the separatrix.

Finite-volume discretization of the differential equa-

tions9,10 leads to a set of algebraic equations that can be sym-

bolically written as

Fð/Þ ¼ Sð/Þ; / ¼ fna; ua; Te; Tig: (1)

Here, / is the solution vector, na is the number density, ua is

the parallel velocity of the ion fluid a, and Te and Ti are the

electron and ion temperatures. The discrete variables are

defined in the cell centers or on the cell faces of the grid.

Fð/Þ is the non-linear vector function, and Sð/Þ are thea)Electronic mail: v.kotov@fz-juelich.de
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source terms calculated by the test particle Monte-Carlo

method in each grid cell.

To find the solution of Equation (1), a discrete time-

derivative D is added to the equations, and iterations over

time are performed. On each time-iteration k, the solution /k

of the following set of equations has to be found:

Fð/kÞ ¼ ~Sð/k�1Þ þ Dð/k;/k�1Þ: (2)

The “time derivative” is defined such that Dð/k;/k�1 ¼ /kÞ
¼ 0. For example, for the particle continuity, Dðnk; nk�1Þ
¼ ðnk � nk�1Þ=Dt, where Dt is the time-step. The notation

with tilde ~Sð/k�1Þ underlines that this source term is calcu-

lated by Monte-Carlo and contains random error, as opposite

to the “exact” value Sð/Þ, which would be obtained with the

infinite number of test particles.

In the code B2, the set of non-linear algebraic equations

(2) is solved by simple iterations and the block Gauss-Seidel

algorithm (splitting by equations). The so-called “internal

iterations” of B2 are described in detail in Ref. 9, Chapter 3;

one may also refer to Ref. 5, Chapter 1.2. The approximate

solution /m
k obtained at the end of internal iteration m can be

inserted back into Equation (2) to find the residual

R ¼ ~Sð/m
k j/k�1Þ þ Dð/m

k ;/k�1Þ � Fð/m
k Þ: (3)

That is, the obtained /m
k fulfills the equation

Fð/m
k Þ ¼ ~Sð/m

k j/k�1Þ þ Dð/m
k ;/k�1Þ þ R: (4)

By comparing with Equation (1), one can see that the differ-

ence between Sð/Þ and the right hand side of Equation (4)

can be seen as generalization of the common residual R.

In the simplest procedure the source terms are calculated

at the beginning of internal iterations and are fixed afterward.

That is, they stay as ~Sð/k�1Þ. However, certain modifications

of the sources can be made in the iterative solver to adjust

them with the changed plasma solution /m
k . This modifica-

tion is reflected in the notation as ~Sð/m
k j/k�1Þ.

A. Measures to ensure particle conservation

Critical importance of very high accuracy in the global

particle balances for the reactor-scale edge modelling was

recognized back at the early stages of the ITER analysis.4,11

To reach this high accuracy, the Monte-Carlo neutral trans-

port code must ensure perfect particle conservation in its

solution. The internal balance in the neutral solver is usually

achieved by re-scaling of the volumetric ion sources esti-

mated by the statistical procedure to make them entirely con-

sistent with the primary sources of neutral particles. To

increase the accuracy, the particles originating from different

primary sources s are sampled independently from each

other—the source is split into independent “strata.” The pri-

mary sources of neutrals are (i) recombination of ions on the

solid surfaces—“recycling”; (ii) volumetric recombination in

plasma; (iii) gas puff; and (iv) erosion. The strength of recy-

cling sources is proportional to the ion fluxes.

If the volumetric ion sources ~Sð/k�1Þ stay fixed, but the

fluxes of neutralized (recycled) ions change in the course of

internal iterations, then an imbalance in the sinks and sources

occurs. To compensate for this inconsistency, the sources of

ions a coming from recycling strata s, ~S
s

að/k�1Þ, must be re-

scaled as follows:

~S
s

a /j
kj/k�1

� �
¼

Qs
b /j

k

� �
Qs

b /0
k

� � ~S
s

a /k�1ð Þ: (5)

Here, j is the index of internal iteration, /0
k ¼ /k�1, and Q is

the total flux of neutralized ions to which the source Ss
a is

proportional. For example, if a is Heþ, then Qs
b is the sum of

the fluxes of Heþ and Heþþ.

III. MONITORING OF THE PARTICLE BALANCE

Numerical diagnostic for monitoring of the steady-state

global particle balance can be derived from Equation (4) by

transforming it into the form

Fð/m
k Þ ¼ ~Sð/m

k Þ þ Rþ ~Sð/m
k j/k�1Þ

�
�~Sð/m

k Þ þ Dð/m
k ;/k�1Þ

�
: (6)

Error (inconsistency) in the particle balance is defined sepa-

rately for each ion species b. “Ion species” here is the chemi-

cal element as opposite to “ion fluids” which are charged

states of an element. For example, species Carbon includes 6

ion fluids from Cþ to C6þ.

Equation (6) is applied to the discretized continuity

equation for each ion fluid a in each cell i. Then, the sum is

calculated

X
i

X
a0

~S
a0

i ð/m
k Þ � Fa0

i ð/m
k Þ

h i

¼
X

i

X
a0
�Ra0

i þ ~S
a0

i ð/m
k Þ � ~S

a0

i ð/m
k j/k�1Þ

h

�Da0
i ð/m

k ;/k�1Þ
i
: (7)

Here,
P

i is the sum over all grid cells, and
P

a0 is the sum

over all ion fluids which belong to ion species b. It is readily

seen that there is a perfect balance between volumetric sour-

ces and fluxes if the left hand side of Equation (7) equals

zero, and the right hand side is the error in the global particle

balance of species b.

An alternative way of writing the particle balance uses

formulation via fluxes4,11

DCb ¼
Cb

puf f þ Cb
core þ Cb

spt � Cb
pump � Cb

leak

Cb
puf f þ Cb

core þ Cb
spt

: (8)

Here, Cb
puf f is the strength of external particle source—gas

puff, Cb
core is the ion flux through the core grid boundary,

Cb
spt is the flux sputtered (eroded) from the solid surfaces,

Cb
pump is the flux (of both ions and neutrals) absorbed on solid

surfaces—pumped flux, and Cb
leak is the flux of atoms which

leak to the core.

The final steady-state solution has to self-adjust in such

a way that the rate with which the particles are removed
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from the system Cb
pump þ Cb

leak becomes equal to the particle

input

Cb
in ¼ Cb

puf f þ Cb
core þ Cb

spt: (9)

That is, Cb
in serves as a scale with which the particle balance

error has to be compared. The numerical solution can be con-

sidered as physically meaningful only if this error� Cb
in.

Coming back to Equation (7), its right hand side yields

the following expression for the relative error

Db ¼ Db
R þ Db

S þ Db
T ;

Db
R ¼
�
X

i

X
a0

Ra0
i

Cb
in

;

Db
S ¼

X
i

X
a0

~S
a0

i /m
k

� �
� ~S

a0

i /m
k j/k�1

� �h i
Cb

in

;

Db
T ¼

1

Cb
in

X
i

X
a0

na0;i
k�1 � na0;i

k

Dt
: (10)

The first term Db
R contains residuals calculated with Equation

(3) after the end of internal iterations. This is the error in the

solution of the set of nonlinear finite-volume equations on

each time-iteration. The term Db
S is due to inconsistency of

the neutral-related sources calculated on the “old” and “new”

plasmas. It can be called an operator splitting error. This

term can become large if, e.g., the re-scaling procedure,

Equation (3), is not implemented. The last term Db
T is the

time derivative, which is considered as error when a station-

ary solution is looked for.

If the plasma fluxes in Equation (8) are taken from the

solution /m
k and the neutral fluxes are calculated on the same

plasma, then it is easy to show that Equations (8) and (10)

must yield exactly the same result when one extra condition

is fulfilled. This condition is the discrete analogue of the

divergence theoremX
i

X
a0

Fa0
i ð/m

k Þ ¼ Cbþ
out � Cb

core: (11)

Here, Cbþ
out is the total outflux of ions of species b to the grid

boundaries. The total ion source is calculated as the total

source of neutral particles minus their pumped and leaked

fluxes:

X
i

X
a0

~S
a0

i ð/m
k Þ ¼ Cbþ

out þ Cb
puf f þ Cb

spt � Cb
pump � Cb

leak:

(12)

Volume recombination does not appear in Equation (12)

because atoms originating from recombination which re-

ionize back in the plasma do not contribute to the net source,

and particles that are removed from the system are already

included in Cb
pump and Cb

leak. Subtracting Equation (11) from

Equation (12) yields the nominator of Equation (8).

In practice, it makes sense to use both diagnostics in par-

allel. The incorrect particle balance in the solution for

neutrals or a mistake in the transfer of ion fluxes to the

Monte-Carlo code manifests itself as non-physical particle

sinks or sources. The diagnostic of Equation (10) may not be

able to detect them because it does not distinguish between

“legitimate” and “illegitimate” sources and sinks of neutrals.

This distinction is made in Equation (8). The two diagnostics

are complimentary to each other and enable an additional

consistency check.

IV. AN EXAMPLE OF THE CASE STUDY

An example discussed here is based on a SOLPS4.3 run

from the data-base of ITER simulations12 (case #1568vk4;

see Ref. 5, Chapter 4.2). The model plasma consists of all

charged states of D, He, and C. Power entering the computa-

tional domain from the core is equal to PSOL¼ 80 MW, and

47% of PSOL is radiated, mainly by C ions. The D particle

content is controlled by the gas puff CD
puf f ¼ 1:17� 1022 D

�at � s�1 and ion flux from the core CD
core ¼ 0:91� 1022 s�1.

The influx of He ions from the core is set to CHe
core ¼ 2:1

�1020 s�1. All plasma facing components (PFCs) in the

model are covered by carbon. The pump is modelled by an

absorbing surface in the divertor beneath the dome. The

solution represents a relatively hot attached plasma in front

of divertor targets, with insignificant parallel momentum

losses and volume recombination.

In the ITER modelling studies,4,11,12 the B2-EIRENE

code was always applied with internal iterations in the fluid

solver. In the simulation considered here m¼ 20 internal itera-

tions are used, the time-step is Dt¼ 3� 10�7 s. A significant

increase of the time-step is not possible: with Dt> 1� 10�6 s,

a numerical instability develops and no stationary solution

can be found. It turns out that Dt can be increased by orders of

magnitude if no internal iterations are applied, that is m¼ 1.

In this case, no visible instability develops even with Dt¼ 1

� 10�4 s. However, solutions obtained with and without inter-

nal iterations—they are shown in Figure 1—strongly deviate

from each other.

Strictly speaking, in the presence of Monte-Carlo noise

in the source terms, the solutions never reach the true steady-

state. One can only speak about the quasi-steady-state

solution that randomly oscillates around some average. As

applied to the B2-EIRENE runs, the “quasi-steady-state” is

defined through characteristic decay times of selected param-

eters derived from their time-traces (see Appendix). In prac-

tice, the run is regarded as converged if the condition of the

quasi-steady-state is fulfilled and if errors in the global

power and particle balances are small.

Errors in the balances for the two model runs considered

here are given in Table I. The power balance error DP is

defined by Equation (A1), and DC is calculated using

Equation (8). One can see that DP is small in both cases. The

situation is completely different for the particle balance.

Whereas in the simulation made with m¼ 20, both DCD,He

< 10%, in the “fast” run the error approaches 100%. That is,

in the solution obtained with m¼ 1, the pumped fluxes are

negligible compared to CD;He
in .

Individual terms of the error are shown in Table II for

both recycling species D and He. There is a good agreement
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between DC and DRþDSþDT calculated independently

by two diagnostics. From Table II, the reason for the large

error in the m¼ 1 case becomes clear. While DD
S and DD

T

always remain relatively small, DR becomes very large if

the code is operated without internal iterations after each

Monte-Carlo call.

The particle balance is much more difficult to converge

than the power balance because of different relations between

the controlling flux and internal sources and sinks in the sys-

tem. For the power, the sources and sinks in plasma are

smaller than PSOL. In contrast, the particles are “recycled”

between the plasma and solid surfaces, and the total volumet-

ric ion sources by far exceed Cin. In the present example,P
i
~S

D ¼ 4:3� 1024 s�1 and
P

i
~S

He ¼ 8:1� 1022 s�1. Those

numbers are by more than two orders of magnitude larger

than Cin of those species. This problem does not appear for C

because in the present model all incident C particles are

absorbed on the surfaces—this species does not recycle.

In the B2-EIRENE model run discussed above, extra

measures for reduction of residuals on each time-iteration

FIG. 1. B2-EIRENE solutions for ITER with small (Dt¼ 3� 10�7, m¼ 20) and large (Dt¼ 1� 10�4, m¼ 1) errors in the global particle balances, Section IV,

obtained subsequently with and without internal iterations after each call of the Monte-Carlo model for neutral particles. Parameters in the first ring outside the separa-

trix are plotted from the X-point to the X-point. The inner divertor throat is on the left. In the target plots, zero distance is the separatrix, and negative coordinates are

in the Private Flux Region. The dashed line (Dt¼ 1� 10�4, m¼ 1þ 99) is the solution obtained with extra iterations for continuity equations only (see Section V).

TABLE I. Relative errors of the particle and power balances in the model

runs of Section IV.

Case DP (%) DCD (%) DCHe (%) DCC (%)

m¼ 20, Dt¼ 3� 10�7 0.74 1.39 6.77 0.023

m¼ 1, Dt¼ 1� 10�4 0.32 91.5 99.3 4.6

m¼ 1þ 99, Dt¼ 1� 10�4 a 1.8 16.1 14.0 0.53

aThis case is discussed in Section V.

TABLE II. Individual terms of the error in the particle balance (in %),

Equation (10), model runs of Section IV.

Case DD
R DD

S DD
T DHe

R DHe
S DHe

T

m¼ 20, Dt¼ 3� 10�7 0.02 0.14 �1.54 3.10 0.67 �10.63

m¼ 1, Dt¼ 1� 10�4 91.6 1.06 �1.98 100.7 �0.11 0.15

m¼ 1þ 99, Dt¼ 1� 10�4 a 0.17 16.3 0.19 �0.10 4.52 8.92

aThis case is discussed in Section V.
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were absolutely necessary. Only in this case, a solution can

be obtained which is correct in terms of the global balances.

The techniques such as internal iterations in B2 can impose

severe limitations on the time-step, and this is not attractive

from the run-time point of view to operate the code in this

mode. Experience has shown that the use of B2-EIRENE

with m¼ 1 does not always lead to deviations as dramatic as

that shown in Figure 1. For example, in ITER cases with the

single fluid (D only) plasma, DCD was found to be suffi-

ciently small both with and without internal iterations, and

the obtained solutions are close to each other, see example in

Ref. 5, Chapter 4.1.

The multi-fluid simulation analyzed here clearly demon-

strates that this must not always be the case. This example

emphasizes that in each simulation, the particle balance has

to be carefully monitored with the special diagnostics. Too

large error detected by the diagnostic is an unequivocal indi-

cation that the residual reduction techniques must be applied

irrespective of the run-time penalty which they impose.

V. REDUCTION OF RESIDUALS

A series of studies was undertaken with the B2-EIRENE

code to find algorithms which would deliver sufficiently

good accuracy without penalizing the run-time. Their out-

come may be of general interest for developers and users of

other edge modelling codes as well. The main results are

briefly summarized in this section.

As a simplest remedy to the particle balance problem,

a “0D correction” was first tried (see Ref. 5, Chapter 5.5).

The ion density in the whole computational domain is multi-

plied by a constant factor calculated in such a way that with

the corrected ion fluxes, DR automatically becomes zero. It

was found that this method cannot be used because it always

produces solutions oscillating in time and no stationary

solutions.

Much more success was achieved with a correction

based on iterative relaxation of the finite-volume continuity

equations. Technical details of the implementation in B2 can

be found in Ref. 5, Chapter 5.2�5.4. This algorithm works

as follows. The whole set of equations for particle, momen-

tum, and energy balances is relaxed only on the first internal

iteration. On subsequent iterations, only equations for parti-

cle continuity are relaxed. To be precise, in the code B2,

those are pressure correction equations where both the

density and velocity fields are modified. (B2 uses the com-

pressible version of the Patankar’s SIMPLE algorithm; see

Ref. 10, Chapter 6.7 and Ref. 9, Chapter 3.) Nevertheless,

correction of the particle balance via relaxation of the pres-

sure correction equations was found to be very reliable.

Tests performed for the same ITER model as in Section IV

showed that such iterations robustly converge with time-

steps up to Dt¼ 1� 10�4 s.

The results obtained with this algorithm can be found in

the last row in Tables I and II. The run was performed with

99 iterations for continuity equations after one full internal

iteration, which is reflected in the designation m¼ 1þ 99.

Despite increased DS, the method leads to significant reduc-

tion in the total error D due to the reduction of DR. As

expected, the main disadvantage of this procedure is that it

increases residuals of other equations. Closer investigations

(Ref. 5, Chapter 6.1) showed that especially the parallel

momentum balance suffers. However, a comparison of the

solutions obtained with full internal iterations and with the

reduced scheme demonstrates that they are close to each

other: the m¼ 1þ 99 case is shown by dashed lines in Figure

1. Moreover, the tests demonstrated that this result holds

even for the ITER model with high density detached divertor

(see Ref. 5, Chapter 6.4). Hence, the method can be sug-

gested for use in a two stage approach for fast finding of the

initial approximation to the solution, which is then refined on

the second “slow” stage by more accurate techniques.

As a next step, a scheme was proposed where coupled

continuity and parallel momentum balance equations are

iterated—without equations for temperatures. This kind of

“incomplete internal iterations” was implemented in B2-

EIRENE and tested as well, but the results were found to be

unsatisfactory (Ref. 6, Chapter 2.3). Tests showed that simi-

lar to the full internal iterations, the “incomplete iterations”

are prone to numerical instabilities with large time-steps and

therefore give no advantages. The SIMPLE pressure correc-

tion that introduces extra non-linearity is a possible reason of

this behavior. The scheme could be improved if monolithic

coupling of the continuity and momentum equation would be

applied instead, that is, when corrections for both the density

and the velocity fields are calculated simultaneously in a one

set of linear equations.

A fairly simple technique that increases the accuracy

and can be easily implemented in any code is time-averaging

of source terms (Ref. 5, Chapter 3). Although this algorithm

can be helpful in many cases, it was found to be not always

efficient enough in reducing DC, in particular with impurities

(see, example, in Ref. 5, Chapter 4.2). In Ref. 13, a more

advanced “piling method” is described which do not reset

the whole history as the calculation of the new average

starts.

Finally, the brute force method can always be applied to

decrease both the statistical error in the source terms and the

residuals—massive increase of the number of test particles.

Applicability of this solution strongly depends on the avail-

able computing hardware. The test particle Monte-Carlo

algorithm is easy to parallelize, and the increased number

of particles does not necessarily mean the increased wall-

clock run time. Experience5 has indicated that the pure

“brute force compensation” of the particle balance issue

described in Section IV is likely to require�100 processors

to be practical.

VI. CONCLUSIONS

The use of the test particle Monte-Carlo for neutrals in

the tokamak edge modelling codes has an unpleasant side

effect of random error in the source terms. If no special mea-

sures are taken, then this persistent statistical noise leads to

residuals of the discretized fluid equations which do not con-

verge but saturate at a certain level. In the present paper, one

particular well identified issue caused by the saturated resid-

uals has been described. It has been shown that too large
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finite-volume residuals can cause crude violation of the

global particle balance. In turn, for the system in question—

the tokamak edge and divertor plasma—violation of the par-

ticle conservation may have a very strong (“zero order”)

non-local impact on the whole numerical solution.

There are computational techniques that can effectively

reduce the residuals. For example, in the code B2 that uses

splitting by equations, an extra loop of simple iterations on

each time-iteration is applied. However, severe restriction

imposed by those internal iterations on the time-step leads to

a very long overall model run-time when this option is used.

With numerical diagnostics proposed in this work, it can be

unambiguously identified when the too large error in the

particle balance is caused by the saturated residuals, and

the residual reduction techniques must be applied to obtain

the physically meaningful solution. The diagnostics can be

implemented in any finite-volume edge code.

The problem describe here would become less of an

issue if solving the set of non-linear equations on each time-

iteration would not require reduced time-step. If such solvers

are not feasible, then the accuracy and run-time drawbacks

may even outweight the advantage brought by the kinetic

test particle Monte-Carlo in the self-consistent models. The

drawbacks can be partly compensated by reducing the statis-

tical error which is, in principle, only a matter of available

computing resources. Emerging heterogeneous cluster-

booster architectures14 could be particularly well suited for

the combination of a fluid and a Monte-Carlo code. While

the serial finite-volume part runs on cluster, the Monte-Carlo

part can make use of massive parallelization on hundreds of

processing units on the accelerator.
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APPENDIX: PRACTICAL CONVERGENCE CRITERIA
APPLIED TO THE TOKAMAK EDGE MODELLING
CODE B2-EIRENE

The characteristic time-scale sX of the parameter X is

calculated from its time-trace X(tk) by fitting it with a linear

function:

lnX ¼ s�1
X tþ C ) 1

X

dX

dt
¼ 1

sX
:

In the present paper, the number of last time-iterations used

for the fit was equal to maxð2000;N
ð5 lsÞ
p Þ, where N

ð5 lsÞ
p is

the number of points which cover last 5 ls of physical time.

The least-square method is applied to find the parameters sX

and C. The same data-points were used to calculate average

DC and DP in Table I and DR,S,T in Table II.

The control parameters for which sX are calculated are

the total amounts of ions Nb of species b and the total dia-

magnetic energy in electrons Ee and ions Ei

Nb ¼
ðX

a0
na0dV; Ee ¼

3

2

ð
neTedV;

Ei ¼
ð

3

2

X
a

naTi þ
1

2

X
a

manav
2
a

 !
dV;

as well as plasma parameters averaged along the magnetic

separatrix: hneisep; hTeisep; hTiisep
. Here, the integration is

performed over the whole computational grid, V is the geo-

metrical volume,
P

a is the sum over all ion fluids, ne is the

electron density, ma is the atomic mass of ions, and va is their

average macroscopic velocity. The B2-EIRENE solutions

analyzed in this paper were regarded as stationary when

sX> 3 s for all the parameters listed above. For ND and NHe,

sX> 15 s.

Besides this condition of the steady-state, the errors in

the global particle and power balances are checked. The

error in the particle balance is expressed by Equation (8).

The relative error in the power balance is defined as follows:

DP ¼ PSOL � PþPFC � Pn
PFC � Prad � Pn

core

PSOL
: (A1)

Here, PSOL is the power influx into the computational

domain from the core plasma, PþPFC is the power deposited

by charged particles to the Plasma Facing Components

(PFC), Pn
PFC is the power deposited to PFC by neutrals,

Prad is the power radiated by both charged and neutral par-

ticles, and Pn
core is the power transferred by neutrals back to

the core.
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