000829415 001__ 829415
000829415 005__ 20210129230301.0
000829415 0247_ $$2doi$$a10.1021/acs.est.6b04882
000829415 0247_ $$2ISSN$$a0013-936X
000829415 0247_ $$2ISSN$$a1520-5851
000829415 0247_ $$2WOS$$aWOS:000394724300023
000829415 037__ $$aFZJ-2017-03119
000829415 041__ $$aEnglish
000829415 082__ $$a050
000829415 1001_ $$0P:(DE-Juel1)161259$$aMakselon, Joanna$$b0$$eCorresponding author
000829415 245__ $$aExperimental and Numerical Investigations of Silver Nanoparticle Transport under Variable Flow and Ionic Strength in Soil
000829415 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2017
000829415 3367_ $$2DRIVER$$aarticle
000829415 3367_ $$2DataCite$$aOutput Types/Journal article
000829415 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1492582676_12593
000829415 3367_ $$2BibTeX$$aARTICLE
000829415 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829415 3367_ $$00$$2EndNote$$aJournal Article
000829415 520__ $$aUnsaturated column experiments were conducted with an undisturbed loamy sand soil to investigate the influence of flow interruption (FI) and ionic strength (IS) on the transport and retention of surfactant-stabilized silver nanoparticles (AgNP) and the results were compared to those obtained under continuous flow conditions. AgNP concentrations for breakthrough curves (BTCs) and retention profiles (RPs) were analyzed by ICP-MS. Experimental results were simulated by the numerical code HP1 (Hydrus-PhreeqC) with the DLVO theory, extended colloid filtration theory and colloid release model. BTCs of AgNP showed a dramatic drop after FI compared to continuous flow conditions. Evaporation increased due to FI, resulting in increased electrical conductivity of the soil solution, which led to a totally reduced mobility of AgNP. A reduction of IS after FI enhanced AgNP mobility slightly. Here the strongly increased Al and Fe concentration in the effluent suggested that soil colloids facilitated the release of AgNP (cotransport). The numerical model reproduced the measured AgNP BTCs and indicated that attachment to the air–water interface (AWI) occurring during FI was the key process for AgNP retention.
000829415 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000829415 588__ $$aDataset connected to CrossRef
000829415 7001_ $$0P:(DE-Juel1)161203$$aZhou, Dan$$b1
000829415 7001_ $$0P:(DE-Juel1)156216$$aEngelhardt, Irina$$b2
000829415 7001_ $$0P:(DE-HGF)0$$aJacques, Diederik$$b3
000829415 7001_ $$0P:(DE-Juel1)129484$$aKlumpp, Erwin$$b4$$ufzj
000829415 773__ $$0PERI:(DE-600)1465132-4$$a10.1021/acs.est.6b04882$$gVol. 51, no. 4, p. 2096 - 2104$$n4$$p2096 - 2104$$tEnvironmental science & technology$$v51$$x1520-5851$$y2017
000829415 8564_ $$uhttps://juser.fz-juelich.de/record/829415/files/acs%252Eest%252E6b04882.pdf$$yRestricted
000829415 8564_ $$uhttps://juser.fz-juelich.de/record/829415/files/acs%252Eest%252E6b04882.gif?subformat=icon$$xicon$$yRestricted
000829415 8564_ $$uhttps://juser.fz-juelich.de/record/829415/files/acs%252Eest%252E6b04882.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000829415 8564_ $$uhttps://juser.fz-juelich.de/record/829415/files/acs%252Eest%252E6b04882.jpg?subformat=icon-180$$xicon-180$$yRestricted
000829415 8564_ $$uhttps://juser.fz-juelich.de/record/829415/files/acs%252Eest%252E6b04882.jpg?subformat=icon-640$$xicon-640$$yRestricted
000829415 8564_ $$uhttps://juser.fz-juelich.de/record/829415/files/acs%252Eest%252E6b04882.pdf?subformat=pdfa$$xpdfa$$yRestricted
000829415 909CO $$ooai:juser.fz-juelich.de:829415$$pVDB:Earth_Environment$$pVDB
000829415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161259$$aForschungszentrum Jülich$$b0$$kFZJ
000829415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129484$$aForschungszentrum Jülich$$b4$$kFZJ
000829415 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000829415 9141_ $$y2017
000829415 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000829415 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENVIRON SCI TECHNOL : 2015
000829415 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829415 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829415 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000829415 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829415 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829415 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829415 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829415 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829415 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829415 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000829415 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000829415 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000829415 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENVIRON SCI TECHNOL : 2015
000829415 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000829415 980__ $$ajournal
000829415 980__ $$aVDB
000829415 980__ $$aI:(DE-Juel1)IBG-3-20101118
000829415 980__ $$aUNRESTRICTED