001     829415
005     20210129230301.0
024 7 _ |a 10.1021/acs.est.6b04882
|2 doi
024 7 _ |a 0013-936X
|2 ISSN
024 7 _ |a 1520-5851
|2 ISSN
024 7 _ |a WOS:000394724300023
|2 WOS
037 _ _ |a FZJ-2017-03119
041 _ _ |a English
082 _ _ |a 050
100 1 _ |a Makselon, Joanna
|0 P:(DE-Juel1)161259
|b 0
|e Corresponding author
245 _ _ |a Experimental and Numerical Investigations of Silver Nanoparticle Transport under Variable Flow and Ionic Strength in Soil
260 _ _ |a Columbus, Ohio
|c 2017
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1492582676_12593
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Unsaturated column experiments were conducted with an undisturbed loamy sand soil to investigate the influence of flow interruption (FI) and ionic strength (IS) on the transport and retention of surfactant-stabilized silver nanoparticles (AgNP) and the results were compared to those obtained under continuous flow conditions. AgNP concentrations for breakthrough curves (BTCs) and retention profiles (RPs) were analyzed by ICP-MS. Experimental results were simulated by the numerical code HP1 (Hydrus-PhreeqC) with the DLVO theory, extended colloid filtration theory and colloid release model. BTCs of AgNP showed a dramatic drop after FI compared to continuous flow conditions. Evaporation increased due to FI, resulting in increased electrical conductivity of the soil solution, which led to a totally reduced mobility of AgNP. A reduction of IS after FI enhanced AgNP mobility slightly. Here the strongly increased Al and Fe concentration in the effluent suggested that soil colloids facilitated the release of AgNP (cotransport). The numerical model reproduced the measured AgNP BTCs and indicated that attachment to the air–water interface (AWI) occurring during FI was the key process for AgNP retention.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhou, Dan
|0 P:(DE-Juel1)161203
|b 1
700 1 _ |a Engelhardt, Irina
|0 P:(DE-Juel1)156216
|b 2
700 1 _ |a Jacques, Diederik
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Klumpp, Erwin
|0 P:(DE-Juel1)129484
|b 4
|u fzj
773 _ _ |a 10.1021/acs.est.6b04882
|g Vol. 51, no. 4, p. 2096 - 2104
|0 PERI:(DE-600)1465132-4
|n 4
|p 2096 - 2104
|t Environmental science & technology
|v 51
|y 2017
|x 1520-5851
856 4 _ |u https://juser.fz-juelich.de/record/829415/files/acs%252Eest%252E6b04882.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829415/files/acs%252Eest%252E6b04882.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829415/files/acs%252Eest%252E6b04882.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829415/files/acs%252Eest%252E6b04882.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829415/files/acs%252Eest%252E6b04882.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829415/files/acs%252Eest%252E6b04882.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:829415
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161259
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129484
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENVIRON SCI TECHNOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENVIRON SCI TECHNOL : 2015
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21