001     829450
005     20210129230303.0
024 7 _ |a 10.1002/2016WR019982
|2 doi
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 2128/14209
|2 Handle
024 7 _ |a WOS:000398568800005
|2 WOS
024 7 _ |a altmetric:19209084
|2 altmetric
037 _ _ |a FZJ-2017-03149
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 0
|e Corresponding author
245 _ _ |a Heat and water transport in soils and across the soil-atmosphere interface: 1. Theory and different model concepts
260 _ _ |a [New York]
|c 2017
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1492697364_11158
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Evaporation is an important component of the soil water balance. It is composed of water flow and transport processes in a porous medium that are coupled with heat fluxes and free air flow. This work provides a comprehensive review of model concepts used in different research fields to describe evaporation. Concepts range from nonisothermal two-phase flow, two-component transport in the porous medium that is coupled with one-phase flow, two-component transport in the free air flow to isothermal liquid water flow in the porous medium with upper boundary conditions defined by a potential evaporation flux when available energy and transfer to the free airflow are limiting or by a critical threshold water pressure when soil water availability is limiting. The latter approach corresponds with the classical Richards equation with mixed boundary conditions. We compare the different approaches on a theoretical level by identifying the underlying simplifications that are made for the different compartments of the system: porous medium, free flow and their interface, and by discussing how processes not explicitly considered are parameterized. Simplifications can be grouped into three sets depending on whether lateral variations in vertical fluxes are considered, whether flow and transport in the air phase in the porous medium are considered, and depending on how the interaction at the interface between the free flow and the porous medium is represented. The consequences of the simplifications are illustrated by numerical simulations in an accompanying paper.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fetzer, Thomas
|0 0000-0002-3761-8248
|b 1
700 1 _ |a Mosthaf, Klaus
|0 0000-0002-7033-4351
|b 2
700 1 _ |a Smits, Kathleen M.
|0 0000-0002-8319-0940
|b 3
700 1 _ |a Helmig, Rainer
|0 0000-0003-2601-5377
|b 4
773 _ _ |a 10.1002/2016WR019982
|g Vol. 53, no. 2, p. 1057 - 1079
|0 PERI:(DE-600)2029553-4
|n 2
|p 1057 - 1079
|t Water resources research
|v 53
|y 2017
|x 0043-1397
856 4 _ |y Published on 2017-02-03. Available in OpenAccess from 2017-08-03.
|u https://juser.fz-juelich.de/record/829450/files/Vanderborght_et_al-2017-Water_Resources_Research.pdf
856 4 _ |y Published on 2017-02-03. Available in OpenAccess from 2017-08-03.
|x icon
|u https://juser.fz-juelich.de/record/829450/files/Vanderborght_et_al-2017-Water_Resources_Research.gif?subformat=icon
856 4 _ |y Published on 2017-02-03. Available in OpenAccess from 2017-08-03.
|x icon-1440
|u https://juser.fz-juelich.de/record/829450/files/Vanderborght_et_al-2017-Water_Resources_Research.jpg?subformat=icon-1440
856 4 _ |y Published on 2017-02-03. Available in OpenAccess from 2017-08-03.
|x icon-180
|u https://juser.fz-juelich.de/record/829450/files/Vanderborght_et_al-2017-Water_Resources_Research.jpg?subformat=icon-180
856 4 _ |y Published on 2017-02-03. Available in OpenAccess from 2017-08-03.
|x icon-640
|u https://juser.fz-juelich.de/record/829450/files/Vanderborght_et_al-2017-Water_Resources_Research.jpg?subformat=icon-640
856 4 _ |y Published on 2017-02-03. Available in OpenAccess from 2017-08-03.
|x pdfa
|u https://juser.fz-juelich.de/record/829450/files/Vanderborght_et_al-2017-Water_Resources_Research.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:829450
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129548
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER RESOUR RES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21