001     829451
005     20210129230303.0
024 7 _ |a 10.1002/2016WR019983
|2 doi
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 2128/14210
|2 Handle
024 7 _ |a WOS:000398568800006
|2 WOS
037 _ _ |a FZJ-2017-03150
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Fetzer, Thomas
|0 0000-0002-3761-8248
|b 0
245 _ _ |a Heat and water transport in soils and across the soil-atmosphere interface: 2. Numerical analysis
260 _ _ |a [New York]
|c 2017
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1492697844_11125
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In an accompanying paper, we presented an overview of a wide variety of modeling concepts, varying in complexity, used to describe evaporation from soil. Using theoretical analyses, we explained the simplifications and parameterizations in the different approaches. In this paper, we numerically evaluate the consequences of these simplifications and parameterizations. Two sets of simulations were performed. The first set investigates lateral variations in vertical fluxes, which emerge from both homogeneous and heterogeneous porous media, and their importance to capturing evaporation behavior. When evaporation decreases from parts of the heterogeneous soil surface, lateral flow and transport processes in the free flow and in the porous medium generate feedbacks that enhance evaporation from wet surface areas. In the second set of simulations, we assume that the vertical fluxes do not vary considerably in the simulation domain and represent the system using one-dimensional models which also consider dynamic forcing of the evaporation process, for example, due to diurnal variations in net radiation. Simulated evaporation fluxes subjected to dynamic forcing differed considerably between model concepts depending on how vapor transport in the air phase and the interaction at the interface between the free flow and porous medium were represented or parameterized. However, simulated cumulative evaporation losses from initially wet soil profiles were very similar between model concepts and mainly controlled by the desorptivity, Sevap, of the porous medium, which depends mainly on the liquid flow properties of the porous medium.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 1
|e Corresponding author
700 1 _ |a Mosthaf, Klaus
|0 0000-0002-7033-4351
|b 2
700 1 _ |a Smits, Kathleen M.
|0 0000-0002-8319-0940
|b 3
700 1 _ |a Helmig, Rainer
|0 0000-0003-2601-5377
|b 4
773 _ _ |a 10.1002/2016WR019983
|g Vol. 53, no. 2, p. 1080 - 1100
|0 PERI:(DE-600)2029553-4
|n 2
|p 1080 - 1100
|t Water resources research
|v 53
|y 2017
|x 0043-1397
856 4 _ |y Published on 2017-02-03. Available in OpenAccess from 2017-08-03.
|u https://juser.fz-juelich.de/record/829451/files/Fetzer_et_al-2017-Water_Resources_Research.pdf
856 4 _ |y Published on 2017-02-03. Available in OpenAccess from 2017-08-03.
|x icon
|u https://juser.fz-juelich.de/record/829451/files/Fetzer_et_al-2017-Water_Resources_Research.gif?subformat=icon
856 4 _ |y Published on 2017-02-03. Available in OpenAccess from 2017-08-03.
|x icon-1440
|u https://juser.fz-juelich.de/record/829451/files/Fetzer_et_al-2017-Water_Resources_Research.jpg?subformat=icon-1440
856 4 _ |y Published on 2017-02-03. Available in OpenAccess from 2017-08-03.
|x icon-180
|u https://juser.fz-juelich.de/record/829451/files/Fetzer_et_al-2017-Water_Resources_Research.jpg?subformat=icon-180
856 4 _ |y Published on 2017-02-03. Available in OpenAccess from 2017-08-03.
|x icon-640
|u https://juser.fz-juelich.de/record/829451/files/Fetzer_et_al-2017-Water_Resources_Research.jpg?subformat=icon-640
856 4 _ |y Published on 2017-02-03. Available in OpenAccess from 2017-08-03.
|x pdfa
|u https://juser.fz-juelich.de/record/829451/files/Fetzer_et_al-2017-Water_Resources_Research.pdf?subformat=pdfa
856 4 _ |y Published on 2017-02-03. Available in OpenAccess from 2017-08-03.
|x icon-700
|u https://juser.fz-juelich.de/record/829451/files/Fetzer_et_al-2017-Water_Resources_Research.jpg?subformat=icon-700
909 C O |o oai:juser.fz-juelich.de:829451
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129548
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER RESOUR RES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21